Appendix E – Local Model Validation Report (LMVR)

REPORT N<sup>o</sup> 3

# LAKE LOTHING THIRD CROSSING

LOCAL MODEL VALIDATION REPORT

CONFIDENTIAL



# LAKE LOTHING THIRD CROSSING

#### LOCAL MODEL VALIDATION REPORT

**Suffolk County Council** 

## Type of document (version) Confidential

Project no: 70012367

Date:

**WSP | Parsons Brinckerhoff** 

Regus House Southampton International Business Park George Curl Way Southampton SO18 2RZ

Tel: +44 (0) 23 8030 2529

www.wspgroup.com www.pbworld.com



## QUALITY MANAGEMENT

| ISSUE/REVISION | FIRST ISSUE                                                                                                   | REVISION 1 | REVISION 2 | REVISION 3 |  |  |  |
|----------------|---------------------------------------------------------------------------------------------------------------|------------|------------|------------|--|--|--|
| Remarks        |                                                                                                               |            |            |            |  |  |  |
| Date           | 15/12/2015                                                                                                    |            |            |            |  |  |  |
| Prepared by    | Michael Johns                                                                                                 |            |            |            |  |  |  |
| Signature      |                                                                                                               |            |            |            |  |  |  |
| Checked by     | Alan Cowan                                                                                                    |            |            |            |  |  |  |
| Signature      |                                                                                                               |            |            |            |  |  |  |
| Authorised by  | Craig Drennan                                                                                                 |            |            |            |  |  |  |
| Signature      |                                                                                                               |            |            |            |  |  |  |
| Project number | 70012367                                                                                                      |            |            |            |  |  |  |
| Report number  | 3                                                                                                             |            |            |            |  |  |  |
| File reference | S:\70012367 - Lowestoft Traffic Model Update\C Documents\Reports\LMVR\151215 Lake Lothing Lowestoft LMVR.docx |            |            |            |  |  |  |

## TABLE OF CONTENTS

| 1  | INTRODUCTION1                                            |
|----|----------------------------------------------------------|
| 2  | PROPOSED USES OF THE MODEL AND KEY DESIGN CONSIDERATIONS |
| 3  | MODEL STANDARDS5                                         |
| 4  | KEY FEATURES OF THE MODEL8                               |
| 5  | CALIBRATION AND VALIDATION DATA17                        |
| 6  | NETWORK DEVELOPMENT34                                    |
| 7  | TRIP MATRIX DEVELOPMENT41                                |
| 8  | NETWORK CALIBRATION AND VALIDATION49                     |
| 9  | ROUTE CHOICE CALIBRATION AND VALIDATION50                |
| 10 | TRIP MATRIX CALIBRATION AND VALIDATION53                 |
| 11 | ASSIGNMENT CALIBRATION AND VALIDATION72                  |
| 12 | SUMMARY OF MODEL DEVELOPMENT, STANDARDS                  |

### TABLES

| TABLE 3.1 - SCREENLINE ACCEPTABILITY                                                                                        | 5  |
|-----------------------------------------------------------------------------------------------------------------------------|----|
| TABLE 3.2 - LINK ACCEPTABILITY                                                                                              | 6  |
| TABLE 3.3 - JOURNEY TIME ACCEPTABILITY                                                                                      | 6  |
| TABLE 3.4 - CONVERGENCE CRITERIA                                                                                            | 7  |
| TABLE 4.1 - PEAK HOUR IDENTIFICATION                                                                                        | 14 |
| TABLE 4.2 – 2015 GENERALISED COST PARAMETERS                                                                                | 15 |
| TABLE 5.1 – COMMISSIONED SURVEY DATA                                                                                        | 17 |
| TABLE 5.2 – ANPR COUNT LOCATION DESCRIPTIONS                                                                                | 18 |
| TABLE 5.3 – DESCRIPTION OF TRAFFIC COUNTS USED FOR MATRIX ESTIMATION                                                        | 22 |
| TABLE 5.4 – DESCRIPTION OF TRAFFIC COUNTS USED FOR VALIDATION                                                               | 25 |
| TABLE 5.5 – COMPARISON OF ATC AND MCC AT WESTERN MUTFORD BRIDGE (A146 SALTWATER WAY)                                        | 26 |
| TABLE 5.6 – COMPARISON OF ATC AND MCC VEHICLE SPLIT FOR OBSERVED COUNT TOTAL AT WESTERN MUTFORD BRIDGE (A146 SALTWATER WAY) | 26 |
| TABLE 5.7 – COMPARISON OF ATC AND MCC VEHICLE SPLIT FOR OBSERVED COUNT TOTAL AT EASTERN BASCULE BRIDGE (A12 PIER TERRACE)   | 27 |
| TABLE 5.8 – MANUAL CLASSIFIED COUNT LOCATIONS                                                                               | 29 |
| TABLE 5.9 – DESCRIPTION OF JOURNEY TIME ROUTES                                                                              | 32 |
| TABLE 6.1 – EASTERN BASCULE BRIDGE OBSERVED LIFTING TIMES                                                                   | 35 |
| TABLE 6.2 – EASTERN BASCULE BRIDGE TIMINGS INPUT INTO MODEL                                                                 | 35 |
| TABLE 6.3 – BRIDGE ROAD LEVEL CROSSING TIMINGS INPUT INTO THE MODEL.                                                        | 35 |
| TABLE 6.4 – VICTORIA ROAD LEVEL CROSSING TIMINGS INPUT INTO THE MODEL                                                       | 36 |
| TABLE 6.5 - ROUNDABOUT ENTRY CAPACITY SATURATION FLOWS                                                                      | 37 |
| TABLE 6.6- ROUNDABOUT GAP ACCEPTANCE PARAMETERS (SECONDS)                                                                   | 37 |
| TABLE 6.7 - MODEL SPEED FLOW CURVES                                                                                         | 38 |
| TABLE 7.1 – TOTAL OBSERVED ANPR TRIPS (LESS THAN 60 MINUTES IN DURATION)                                                    | 42 |
| TABLE 7.2 – OBSERVED ANPR MATRIX TOTALS FOLLOWING FURNESSING TO MCC TOTALS                                                  | 43 |
| TABLE 7.3 – OBSERVED ANPR MATRIX TOTALS FOLLOWING CORRESPONDENCE BETWEEN 2001 ZONE SYSTEM AND 2015 ZONE SYSTEM              |    |
| TABLE 7.4 - SUMMARY ANPR MATRIX TOTALS                                                                                      | 45 |
| TABLE 7.5 – PEAK PERIOD TO PEAK HOUR FACTORS                                                                                | 46 |
| TABLE 7.6 – GRAVITY MODEL INFILL THRESHOLDS                                                                                 |    |
| TABLE 7.7 – BETA (B) VALUES USED WITHIN GRAVITY MODEL                                                                       | 47 |
| TABLE 7.8 – R-SQUARE RESULTS FROM GRAVITY MODEL                                                                             |    |
| TABLE 7.9 – PRIOR MATRIX TOTALS                                                                                             | 48 |
| TABLE 9.1 - GENERALISED COST PARAMETERS - PENCE PER MINUTE (PPM)                                                            |    |
| TABLE 9.2 - GENERALISED COST PARAMETERS - PENCE PER KILOMETRE (PPK)                                                         |    |

| TABLE 9.3 - OD ROUTE CHECKS                                                                   | 51 |
|-----------------------------------------------------------------------------------------------|----|
| TABLE 10.1 - INITIAL PRIOR MATRIX SCREENLINE VALIDATION AND CALIBRATION RESULTS - AM PEAK     | 54 |
| TABLE 10.2: INITIAL PRIOR MATRIX SCREENLINE VALIDATION AND CALIBRATION RESULTS - INTER PEAK   | 55 |
| TABLE 10.3 - INITIAL PRIOR MATRIX SCREENLINE VALIDATION AND CALIBRATION RESULTS - PM PEAK     | 56 |
| TABLE 10.4 - PRE AND POST PRIOR MATRIX ADJUSTMENT TRIP TOTALS                                 | 57 |
| TABLE 10.5 - ADJUSTED PRIOR MATRIX SCREENLINE VALIDATION AND CALIBRATION RESULTS - AM PEAK    | 58 |
| TABLE 10.6 - ADJUSTED PRIOR MATRIX SCREENLINE VALIDATION AND CALIBRATION RESULTS - INTER PEAK | 59 |
| TABLE 10.7 - ADJUSTED PRIOR MATRIX SCREENLINE VALIDATION AND CALIBRATION RESULTS - PM PEAK    |    |
| TABLE 10.8: PRIOR AND POST MATRIX TOTALS                                                      | 62 |
| TABLE 10.9: POST ME SCREENLINE VALIDATION AND CALIBRATION RESULTS - AM PEAK                   | 63 |
| TABLE 10.10: POST ME SCREENLINE VALIDATION AND CALIBRATION RESULTS - INTER PEAK               |    |
| TABLE 10.11: POST ME SCREENLINE VALIDATION AND CALIBRATION RESULTS - PM PEAK                  |    |
| TABLE 10.12: REGRESSION STATISTICS AM PEAK                                                    | 68 |
| TABLE 10.13: REGRESSION STATISTICS INTER PEAK                                                 | 69 |
| TABLE 10.14: REGRESSION STATISTICS PM PEAK                                                    | 70 |
| TABLE 10.15: SECTOR TO SECTOR MOVEMENT RESULTS - AM PEAK                                      | 71 |
| TABLE 10.16: SECTOR TO SECTOR MOVEMENT RESULTS - INTER PEAK                                   | 71 |
| TABLE 10.17: SECTOR TO SECTOR MOVEMENT RESULTS - PM PEAK                                      | 71 |
| TABLE 11.1 - AM PEAK CONVERGENCE RESULTS                                                      | 72 |
| TABLE 11.2 - INTER PEAK CONVERGENCE RESULTS                                                   |    |
| TABLE 11.3 - PM PEAK CONVERGENCE RESULTS                                                      | 73 |
| TABLE 11.4 - AM PEAK HOUR ALL USER CLASSES CALIBRATION AND VALIDATION RESULTS                 |    |
| TABLE 11.5 - AM PEAK HOUR CAR ONLY CALIBRATION AND VALIDATION RESULTS                         |    |
| TABLE 11.6 - INTER PEAK HOUR ALL USER CLASSES CALIBRATION AND VALIDATION RESULTS              | 75 |
| TABLE 11.7 - INTER PEAK HOUR CAR ONLY CALIBRATION AND VALIDATION RESULTS                      | 75 |
| TABLE 11.8 - PM PEAK HOUR ALL USER CLASSES CALIBRATION AND VALIDATION RESULTS                 | 76 |
| TABLE 11.9 - PM PEAK HOUR CAR ONLY CALIBRATION AND VALIDATION RESULTS                         | 76 |
| TABLE 11.10 - AM PEAK GEH SUMMARY                                                             | 77 |
| TABLE 11.11 - INTER PEAK GEH SUMMARY                                                          | 77 |
| TABLE 11.12 - PM PEAK GEH SUMMARY                                                             | 78 |
| TABLE 11.13 - AM PEAK JOURNEY TIME ROUTE COMPARISON                                           | 79 |
| TABLE 11.14 - INTER PEAK JOURNEY TIME ROUTE COMPARISON                                        |    |
| TABLE 11.15 - PM PEAK JOURNEY TIME ROUTE COMPARISON                                           | 81 |

| TABLE 11.16 - AM PEAK MANUAL CLASSIFIED COUNT PERFORMANCE  TABLE 11.17 - INTERPEAK MANUAL CLASSIFIED COUNT PERFORMANCE  TABLE 11.18 - PM PEAK MANUAL CLASSIFIED COUNT PERFORMANCE | 83 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| FIGURES                                                                                                                                                                           |    |
| FIGURE 2.1 - BRIDGE LOCATIONS                                                                                                                                                     | 3  |
| FIGURE 4.1 - MODELLED AREA                                                                                                                                                        | 8  |
| FIGURE 4.2 - ZONING IN AREA OF DETAILED MODELLING                                                                                                                                 | 9  |
| FIGURE 4.3 - ZONING IN EXTERNAL AREA                                                                                                                                              | 10 |
| FIGURE 4.4 - SECTOR PLAN                                                                                                                                                          | 11 |
| FIGURE 4.5 - NETWORK STRUCTURE                                                                                                                                                    |    |
| FIGURE 5.1 – ANPR TRAFFIC COUNTS ON LINKS                                                                                                                                         | 20 |
| FIGURE 5.2 – ANPR TRAFFIC COUNTS AT CAR PARKS                                                                                                                                     | 21 |
| FIGURE 5.3 – COUNTS AND SCREENLINES USED FOR CALIBRATION                                                                                                                          | 24 |
| FIGURE 5.4 – COUNTS AND SCREENLINES USED FOR VALIDATION                                                                                                                           | 28 |
| FIGURE 5.5 – WIDER NETWORK MCC                                                                                                                                                    | 30 |
| FIGURE 5.6 – AECOM TOWN CENTRE MCC                                                                                                                                                | 31 |
| FIGURE 5.7 – JOURNEY TIME ROUTES                                                                                                                                                  | 33 |
| FIGURE 10.1: AM PEAK TRIP LENGTH DISTRIBUTION                                                                                                                                     | 66 |
| FIGURE 10.2: INTER PEAK TRIP LENGTH DISTRIBUTION                                                                                                                                  | 67 |
| FIGURE 10.3: PM PEAK TRIP LENGTH DISTRIBUTION                                                                                                                                     | 67 |
|                                                                                                                                                                                   |    |
|                                                                                                                                                                                   |    |

### APPENDICES

| A P | P | Ε | Ν | D | ΙX | Α | MCC TOTALS USED TO FACTOR ANPR DATA         |
|-----|---|---|---|---|----|---|---------------------------------------------|
| A P | Р | Ε | N | D | ΙX | В | <b>GRAVITY MODEL TLD AND MATRIX CHANGES</b> |
| A P | Р | Ε | Ν | D | ΙX | С | ORIGIN-DESTINATION TREES                    |
| A P | Р | Ε | N | D | ΙX | D | POST ME SCREENLINE PERFORMANCE              |
| A P | Р | Ε | N | D | ΙX | Ε | INDIVIDUAL LINK COUNT PERFORMANCE           |
| A P | Р | Ε | N | D | ΙX | F | JOURNEY TIME GRAPHS                         |
| АР  | Р | Е | N | D | ιx | G | FLOW AND V/C PLOTS                          |

## 1 INTRODUCTION

#### 1.1 PROJECT BACKGROUND

- 1.1.1 WSP | Parsons Brinckerhoff has been commissioned by Suffolk County Council (SCC) to undertake traffic modelling in support of a Transport Business Case (TBC) for a third crossing of Lake Lothing in Suffolk.
- There is an existing Lowestoft SATURN highway assignment model representing a base year of 2001. It is therefore considerably outside the Department for Transport (DfT) Transport Analysis Guidance (TAG) requirement (TAG Unit M3.1, January 2014) that trips with both trip ends within the Fully Modelled Area are based on survey data that is less than six years old. The existing model has sub-optimal demand segmentation and assignment, with a single user class matrix representing all cars assigned on top of an HGV pre-load and there is no interpeak model.
- 1.1.3 There have also been improvements in software, techniques and best practice in the intervening period, which, combined with advice provided by SCC, make the existing model unsuitable for use as the basis for assessment.
- 1.1.4 The existing network and zone system will serve as the starting point for development of the updated Lowestoft model, with further refinement where necessary. Given their age, the existing matrices will not be used, but matrices will be rebuilt from new survey data.

#### 1.2 REPORT STRUCTURE

- 1.2.1 This Local Model Validation Report (LMVR) sets out information relating to the development, calibration and validation of the updated highway assignment model. It is structured as follows:
  - → Section 2 Proposed uses of the model and key design considerations
  - → Section 3 Model standards
  - → Section 4 Key features of the model
  - Section 5 Calibration and validation data
  - Section 6 Network development
  - → Section 7 Trip matrix development
  - Section 8 Network calibration and validation
  - → Section 9 Route choice calibration and validation
  - → Section 10 Trip matrix calibration and validation
  - → Section 11 Assignment calibration and validation
  - → Section 12 Summary of model development, standards achieved and fitness for purpose

#### 1.3 DISCLAIMER

- 1.3.1 This report, and information or advice which it contains, has been prepared for the purposes set out in the instructions commissioning it (June 2015) and has been prepared with reasonable skill, care and diligence. This report has been prepared by WSP | Parsons Brinckerhoff in their professional capacity as Consultants and in performance of WSP | Parsons Brinckerhoff's duties and liabilities under its contract with Suffolk County Council. Any advice, opinions, or recommendations within this report should be read and relied upon only in the context of the report as a whole. The advice and opinions in this report are based upon the information made available to WSP | Parsons Brinckerhoff at the date of this report and on current UK standards, codes, technology and construction practices as at the date of this report. The contents of the report do not, in any way, purport to include any manner of legal advice or opinion.
- 1.3.2 The transport modelling that has been carried out under the terms of our appointment (June 2015) and described in this report has been carried out using SATURN (version 11.3.12F). Transport modelling software of this type provides predictions of transport flows on the basis of a number of assumptions. The assumptions made in developing the transport model have been identified within this report.
- 1.3.3 The liability of WSP | Parsons Brinckerhoff in respect of the information contained in the report will not extend to any third party. WSP | Parsons Brinckerhoff accept no responsibility for any costs or losses howsoever incurred as a result of the use of the output from this report unless it is proved to have failed to exercise the degree of skill and care embodied in the terms and conditions of the governing appointment (June 2015) having regard to the use of the software and the assumptions made.

# PROPOSED USES OF THE MODEL AND KEY DESIGN CONSIDERATIONS

#### 2.1 SCENARIOS TO BE FORECAST AND INTERVENTIONS TO BE TESTED

2.1.1 The Lowestoft Traffic Model (LTM) has been developed and validated for the sole purpose of assessing a third crossing of Lake Lothing in Lowestoft. The town centre currently has two river crossings as shown in figure 2.1.

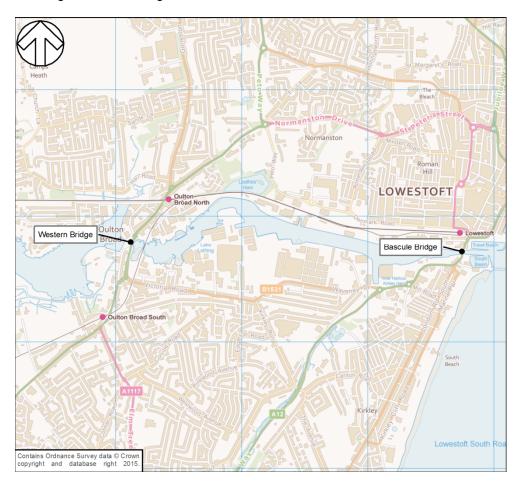



Figure 2.1 - Bridge locations

- 2.1.2 Various options regarding a third crossing are under consideration, and these will be discussed in the relevant reports relating to scheme design and the Transport Business Case (TBC).
- 2.1.3 In addition, the updated LTM may be used to for other assessment purposes subsequent to work relating to the third crossing, but this will require further review of validation to ensure it is fit for other purposes.

#### 2.2 KEY MODEL DESIGN CONSIDERATIONS

- 2.2.1 There are a number of key characteristics of Lowestoft town centre that require particular treatment, and these predominantly relate to the operation of the existing bridges.
- 2.2.2 The western bridge carries the A146 over Lake Lothing, and is significantly constrained by a level crossing to the north of the bridge. Barriers are frequently closed for long periods, leading to lengthy queues that block back across the bridge and other junctions.
- 2.2.3 The eastern Bascule bridge is a lifting bridge which, when raised, can lead to similarly long queues in the town centre. The majority of bridge openings occur in the interpeak period, but not exclusively so. The low height of this bridge and its proximity to the harbour mouth means that it is required to be opened for relatively small craft on a fairly frequent basis. Observations carried out between 14 and 16 April 2015, provided by AECOM, indicate the eastern bridge lifted once during the AM peak (0800-0900) and once during the PM peak (1700-1800) during the days surveyed. In the interpeak (1000-1600) the bridge lifted a maximum of three times during the observed period.
- 2.2.4 An additional design consideration for the traffic model is that there is a tidal flow lane running across the bridge along the A12 between Belvedere Road and Station Square. This was handled by changing the capacity and number of lanes in each direction according to the time of day.
- Observed data for the tidal flow section was provided to WSP | Parsons Brinckerhoff by AECOM, covering 14 to 16 April 2015, detailing the direction of the central lane between 07:00-10:00 and 16:00-19:00. For the AM peak (08:00-09:00) the central lane was modelled as allowing northbound traffic, in the PM peak (17:00-18:00) the central lane is southbound. No observed information was available for the interpeak, however journey time information covering the Bascule Bridge indicated delays similar to the PM peak, and therefore the central lane was modelled as allowing southbound traffic in the interpeak.
- A key issue that has arisen from previous work on this scheme is that it is important to understand the broad origins and destinations of the users of each bridge, and if there is any difference in the split between long-distance strategic users and local users at each bridge crossing that may inform the impacts of a third crossing.

## 3 MODEL STANDARDS

#### 3.1 VALIDATION CRITERIA AND ACCEPTABILITY GUIDELINES

3.1.1 The validation of specific aspects of the model is discussed in following sections of this report. In general, the following criteria will apply, drawn from WebTAG Unit M3.1, section 3.2 (January 2014):

#### SCREENLINE VALIDATION

3.1.2 Screenline validation is undertaken as a check on the trip matrix, and is assessed in terms of the percentage difference between observed and modelled flows as shown in table 3.1.

Table 3.1 - Screenline acceptability

| CRITERIA | Description of Criteria                                                        | ACCEPTABILITY GUIDELINE       |
|----------|--------------------------------------------------------------------------------|-------------------------------|
|          | Differences between modelled flows and counts should be less than 5% of counts | All or nearly all screenlines |

- 3.1.3 Screenlines are presented for each time period, for cars and total vehicles. Although TAG requires information for all vehicle types to be presented, counts of LGV and HGV are not sufficiently high in this study area to allow useful comparisons to be made.
- 3.1.4 "Nearly all" is interpreted here as relating to 85% of cases, in keeping with link validation standards.

#### LINK FLOW AND TURNING MOVEMENT VALIDATION

- 3.1.5 Measures used for link validation are:
  - → Absolute and percentage differences between absolute and modelled flows
  - GEH statistic
- 3.1.6 The GEH statistic is a modified Chi-squared statistic incorporating both relative and absolute errors, defined as follows:

$$GEH = \sqrt{\frac{(M-C)^2}{(M+C)/2}}$$

3.1.7 The link flow and turning movement validation criteria are shown in table 3.2.

Table 3.2 - Link acceptability

| CRITERIA | DESCRIPTION OF CRITERIA                                                         | ACCEPTABILITY GUIDELINE |
|----------|---------------------------------------------------------------------------------|-------------------------|
| 1        | Individual flows within 100 veh/hr of counts for flows less than 700 veh/hr     | > 85% of cases          |
|          | Individual flows within 15% of counts for flows from 700 veh/hr to 2,700 veh/hr | > 85% of cases          |
|          | Individual flows within 400 veh/hr of counts for flows more than 2,700 veh/hr   | > 85% of cases          |
| 2        | GEH < 5 for individual flows                                                    | > 85% of cases          |

- 3.1.8 Both link flows and turning movements are presented using the above criteria, although turning movements are not generally expected to fully meet the criteria.
- 3.1.9 Information is presented for cars and total vehicles in all modelled time periods.

#### JOURNEY TIME VALIDATION

3.1.10 Criteria for journey time validation are presented in table 3.3.

Table 3.3 - Journey time acceptability

| CRITERIA | DESCRIPTION OF CRITERIA                                                                            | ACCEPTABILITY GUIDELINE |  |
|----------|----------------------------------------------------------------------------------------------------|-------------------------|--|
| 1        | Modelled times along routes should be within 15% of surveyed times (or minute, if higher than 15%) | > 85% of routes         |  |

- 3.1.11 The model does not feature different speed/flow relationships or link speeds for different vehicle types, the comparisons are presented for all vehicles combined.
- 3.1.12 Comparisons are presented separately for all modelled time periods.

#### 3.2 CONVERGENCE CRITERIA AND STANDARDS

- 3.2.1 An element of calibrating the model is ensuring that a satisfactory convergence is achieved. Model convergence is needed to ensure traffic flows remain stable between successive iterations of the model. This is particularly important when model outputs are used to inform the economic benefits of scheme appraisal, as it is critical that calculated benefits arise from the impact of the scheme and not as a result of difference in convergence.
- In accordance with criteria set out in TAG Unit M3.1 (January 2014), the parameters %Flow, %GAP and Delta ( $\delta$ ) have been monitored to determine the level of convergence. %Flow measures the proportion of links in the network with flows changing by less than 1% from the previous iteration.  $\delta$  is the difference between costs on chosen routes and costs on minimum cost paths. %GAP is a generalisation of the  $\delta$  function to include the interaction effects within the simulation.

3.2.3 The convergence criteria used to assess when a model is considered to have converged is shown in table 3.4.

**Table 3.4 - Convergence criteria** 

| Measure of Convergence                    | ACCEPTABLE VALUE                                                                               |
|-------------------------------------------|------------------------------------------------------------------------------------------------|
| 'Delta' and %GAP                          | Less than 0.1% or at least stable with convergence fully documented and all other criteria met |
| Percentage of links with flow change < 1% | Four consecutive iterations greater than 98%                                                   |
| Percentage of links with cost change < 1% | Four consecutive iterations greater than 98%                                                   |
| Percentage change in total user costs     | Four consecutive iterations less than 0.1%                                                     |

3.2.4 TAG Unit M3.1 indicates that delta  $(\delta)$  and %GAP values of less than 0.1% is the most fundamental indicator of model convergence and should be achieved as a minimum.

## 4 KEY FEATURES OF THE MODEL

#### 4.1 FULLY MODELLED AREA AND EXTERNAL AREA

4.1.1 The hierarchy of the model area is shown in figure 4.1

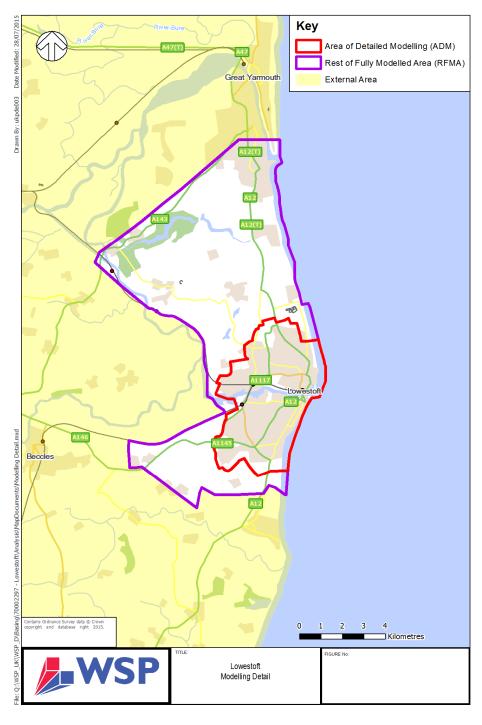



Figure 4.1 - Modelled area

#### 4.2 ZONING SYSTEM

4.2.1 The zoning system is based initially on census LSOA and MSOA boundaries, split to better fit realistic zoning points. The zones within the area of detailed modelling are shown in figure 4.2.

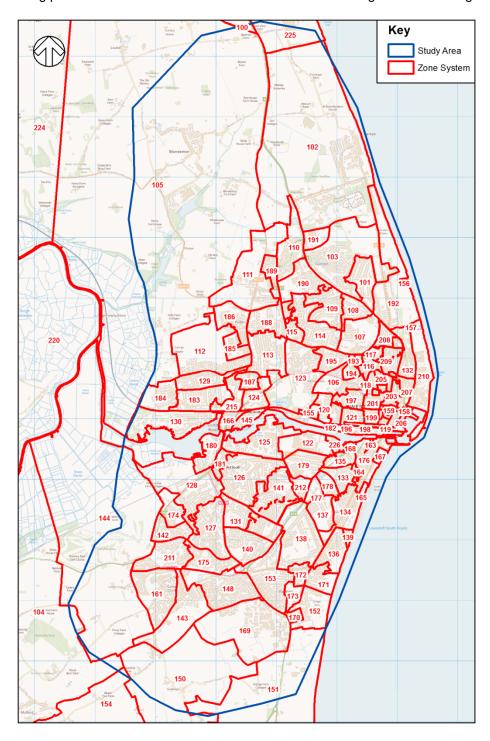



Figure 4.2 - Zoning in area of detailed modelling

#### 4.2.2 Figure 4.3 shows the zoning in the rest of the fully modelled area and the external area.

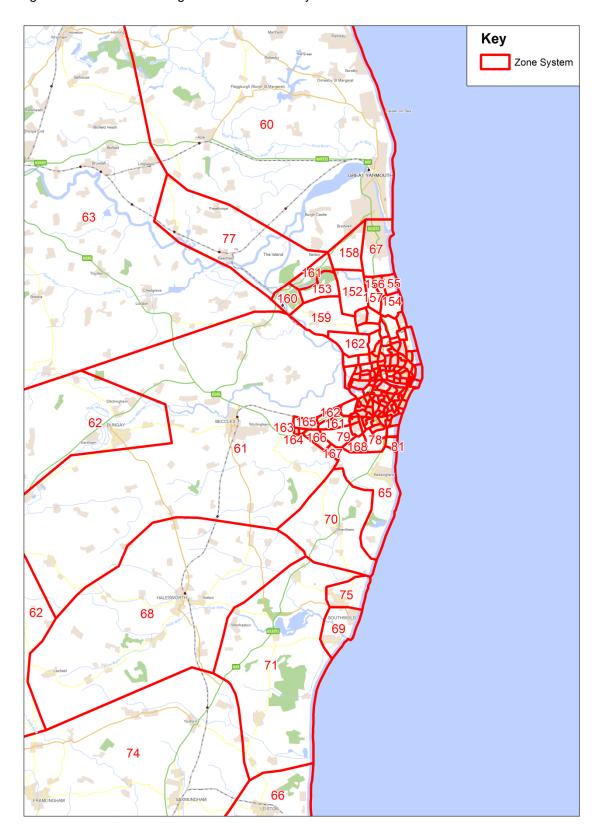



Figure 4.3 - Zoning in external area

4.2.3 The zones have been grouped to create five sectors. The locations of these can be seen in Figure 4.4.

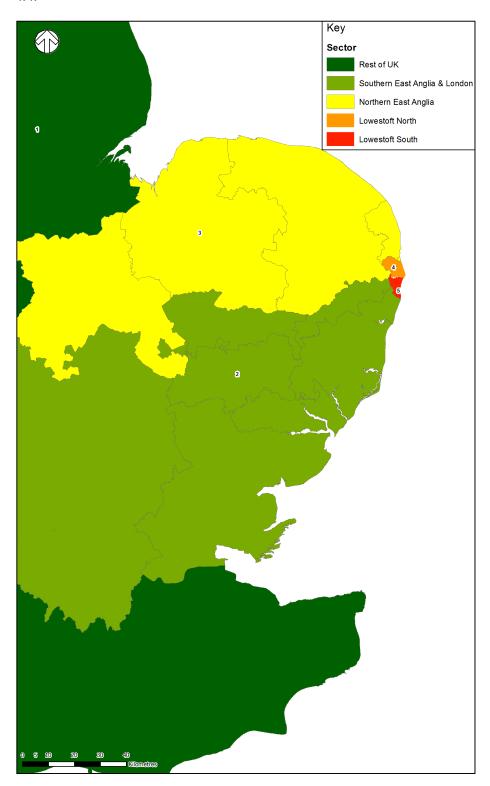



Figure 4.4 - Sector Plan

#### 4.3 NETWORK STRUCTURE

- 4.3.1 The area of detailed modelling covers the town of Lowestoft. In this area, the extent of the network is sufficient to cover all roads with significant traffic volumes and all realistic route choice available to drivers. All major junctions are modelled. In the Rest of the Fully Modelled Area, detail is reduced, with all principal strategic routes modelled and capacity restraint characterised through the use of speed/flow relationships as well as strategically important junctions.
- 4.3.2 In the External Area, the network is simplified to the extent that traffic is able to enter the Fully Modelled Area at the correct locations, without capacity restraint.
- 4.3.3 The network structure is shown in Figure 4.5.



Figure 4.5 - Network structure

#### 4.4 CENTROID CONNECTORS

- 4.4.1 Centroid connectors connect the zoning system to the model network, allowing trips to load onto the network for assignment. It is critical that centroids connectors represent realistic loading points, particularly in the fully modelled area. Centroid connectors in the fully modelled area have been designed to represent actual loading points to specific residential and commercial areas, generally via a spur link to represent the actual access point. In this way, turns into and out of zones can be clearly understood.
- 4.4.2 The number of centroid connectors has been minimised, with most zones having a single centroid connector except in cases where a zone has clear multiple points of access, and sub-dividing the zone would not be realistic.
- 4.4.3 Centroid connectors have been designed so that they do not cross the network, further ensuring that loading is realistic. Connectors for different zones are loaded at different points, to ensure trips between adjacent zones are loaded on to the network. Centroid connectors are also loaded away from count locations, to avoid inconsistencies between the counted flow and loaded trips.
- 4.4.4 In the fully modelled area, zones are sufficiently small such that average costs to access the model are sufficiently represented by the spur access links, so centroids themselves do not have costs associated with them.
- In the external area, centroid connectors are linked to the network with appropriate parameters for distance and average speed to represent the average cost of accessing the network.

#### 4.5 TIME PERIODS

- 4.5.1 The following time periods are modelled:
  - → AM peak (08:00 09:00)
  - → Average interpeak (10:00 16:00)
  - → PM peak (17:00 18:00)

This is consistent with advice presented in Section 2.5 of TAG Unit M3.1 (January 2014). The choice of peak hour has been confirmed through analysis of the available long term ATC sites obtained through the Highways England TRADS database. Average counts are presented in Table 4.1 across each hour of the peak period, with the maximum peak identified in red.

Table 4.1 - Peak hour identification

| N.4       |           | AM PEAK   |           |           | PM PEAK   |           |
|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Month     | 0700-0800 | 0800-0900 | 0900-1000 | 1600-1700 | 1700-1800 | 1800-1900 |
| January   | 1714      | 3020      | 2321      | 2495      | 2508      | 1624      |
| February  | 1780      | 2679      | 2330      | 2462      | 2460      | 1724      |
| March     | 1901      | 3078      | 2491      | 2620      | 2,594     | 1818      |
| April     | 1818      | 2865      | 2470      | 2679      | 2772      | 1918      |
| May       | 1837      | 2895      | 2438      | 2581      | 2677      | 1946      |
| June      | 1858      | 3026      | 2466      | 2600      | 2735      | 1952      |
| July      | 1766      | 2776      | 2424      | 2558      | 2700      | 1966      |
| August    | 1629      | 2455      | 2351      | 2584      | 2746      | 2056      |
| September | 1850      | 2867      | 2387      | 2529      | 2591      | 1912      |
| October   | 1817      | 2812      | 2350      | 2512      | 2565      | 1813      |
| November  | 1797      | 2928      | 2399      | 2521      | 2476      | 1770      |
| December  | 1548      | 2628      | 2380      | 2425      | 2275      | 1654      |

#### 4.6 USER CLASSES

- 4.6.1 The following user classes are modelled:
  - → UC1: Car Commuting
  - → UC2: Car Employer's Business
  - → UC3: Car Other
  - → UC4: LGV
  - → UC5: HGV
- 4.6.2 This is consistent with advice presented in Section 2.6 of TAG Unit M3.1 (January 2014).

#### 4.7 ASSIGNMENT METHODOLOGY

4.7.1 Model assignment of trips to the highway network was undertaken using a standard approach based on a 'Wardrop User Equilibrium', which seeks to minimise travel costs for all vehicles in the network. The Wardrop User Equilibrium is based on the following proposition:

"Traffic arranges itself on congested networks such that the cost of travel on all routes used between each origin-destination pair is equal to the minimum cost of travel and unused routes have equal or greater costs." 4.7.2 The Wardrop User Equilibrium as implemented in SATURN is based on the 'Frank-Wolfe Algorithm', which employs an iterative process. This process is based on successive 'All or Nothing' iterations, which are combined to minimise an 'Objective Function'. The travel costs are recalculated after each iteration and compared to those from the previous iteration. The process is terminated once successive iteration costs have not changed significantly. This process enables multi-routeing between any origin-destination pair.

#### 4.8 GENERALISED COST FORMULATIONS AND PARAMETER VALUES

4.8.1 Generalised cost is defined in keeping with the guidance in section 2.8 of TAG Unit M3.1 (January 2014), and is as follows:

$$Generalised\ cost = Time + \left(\frac{Vehicle\ operating\ cost}{Value\ of\ time}\right) Distance$$

- Value of time is calculated in pence per minute (PPM) and vehicle operating cost is calculated in pence per kilometre (PPK). The adopted parameters were calculated from the WebTAG databook (November 2014).
- 4.8.3 The parameters adopted for a 2015 base year are shown in Table 4.2. For the HGV class, local ATC data was used to determine the split of vehicles which could be classified as OGV1 and OGV2 by peak hour. This split was used to calculate average generalised cost parameters for HGV.

Table 4.2 – 2015 generalised cost parameters

| USER CLASS       | A     | М     | II    | P     | M     |       |
|------------------|-------|-------|-------|-------|-------|-------|
|                  | PPM   | PPK   | PPM   | PPK   | PPM   | PPK   |
| Car<br>Commuting | 13.74 | 6.70  | 13.63 | 6.70  | 13.44 | 6.70  |
| Car Business     | 46.57 | 13.38 | 45.51 | 13.38 | 44.78 | 13.38 |
| Car Other        | 17.49 | 6.70  | 18.18 | 6.70  | 18.72 | 6.70  |
| LGV              | 20.98 | 13.66 | 20.98 | 13.66 | 20.98 | 13.66 |
| HGV              | 21.25 | 37.35 | 21.25 | 37.35 | 21.25 | 37.35 |

## 4.9 CAPACITY RESTRAINT MECHANISMS: JUNCTION MODELLING AND SPEED/FLOW RELATIONSHIPS

#### JUNCTION MODELLING

- 4.9.1 The following key junctions were directly measured in terms of their geometric characteristics with accurate saturation flows included within the model:
  - → Normanston Drive / Peto Way
  - Normanston Drive / Bridge Road / B1375
  - → Bridge Road / A146
  - → A12 / A146

- → A12 / Mill Road
- → A12 / A1145

#### SPEED/FLOW RELATIONSHIPS

- 4.9.2 Speed flow curves consistent with COBA 10 values were allocated to specific links, detailed in section 6.3
- 4.10 RELATIONSHIPS WITH DEMAND MODELS AND PUBLIC TRANSPORT ASSIGNMENT MODELS
- 4.10.1 The highway assignment model will be used as a component of a DIADEM-based variable demand model. No public transport assignment model is included, as it is not required for this assessment. The Traffic Forecasting Report sets out the interactions between the highway assignment model and the demand model, as well as providing further consideration of the need for public transport assignment modelling.

## 5 CALIBRATION AND VALIDATION DATA

#### 5.1 INTRODUCTION

5.1.1 WSP | Parsons Brinckerhoff commissioned a range of surveys which are detailed in the data collection report (October 2015). This included the types of data shown in Table 5.2.

Table 5.1 - Commissioned survey data

| Survey Type                               | Survey Period                              | Тіме        |
|-------------------------------------------|--------------------------------------------|-------------|
| Automatic Number Plate Recognition (ANPR) | Tuesday 14 July 2015                       | 07:00-19:00 |
| Automatic Traffic Counts (ATC)            | Monday 29 June 2015 to Monday 27 July 2015 | All day     |
| Manual Classified Counts (MCC)            | Tuesday 14 <sup>h</sup> July 2015          | 07:00-19:00 |

5.1.2 Manual Classified Counts (MCC) were also obtained from AECOM which were carried out between Tuesday 14 April 2015 and Thursday 16 April 2015, count data was only available at these sites for 0700-1000 and 1600-1900.

#### 5.2 TRAFFIC COUNTS AT ANPR SITES

- 5.2.1 Traffic counts were collected via Automatic Number Plate Recognition (ANPR) cameras at 29 locations described in
- 5.2.2 Table 5.2. The ANPR were located:
  - → on links at key entry points into the study area and on links within the study area including the western Mutford Bridge and eastern Bascule Bridge
  - at car parks within the study area.
- 5.2.3 The purpose of this data was to observe the major origin-destination movements within the study area from which to build the prior matrix.
- 5.2.4 MCC were conducted at each ANPR location to capture the total volume of traffic with vehicles classified into the following types:
  - → Car
  - → LGV
  - → OGV1
  - → OGV2
  - → Bus / Coach
- 5.2.5 Overall the sample rates at each of the external ANPR locations in both inbound and outbound directions were consistently high at around 95%. The overall match rate compared the ANPR trips to the total number of inbound trips recorded by the associated MCC was 51%. Matched trips represented inbound trips into the study area which are then picked up by another ANPR within the cordon. The overall match rate achieved was considered acceptable from which to produce a prior matrix though entails inferring the distribution for 49% of the traffic from the matched trips.

- As detailed in the data collection report, there were a number of issues with the ANPR surveys. At Site 3, on the A12 Yarmouth Road to the north of the study area there was a low inbound sample rate of 36%. The survey company reported the camera at this location appears to have been moved by a member of the public during the survey report which caused the ANPR camera to be at an angle which affected the ability to capture vehicle number plates.
- As detailed in the data collection report, there were a number of issues with the ANPR surveys. At site 13 on Flixton Road, the survey company reported that the ANPR camera failed and no vehicle number plates were captured at this location during the survey period. However an MCC was still carried out at this location.
- 5.2.8 At site 17, Swimming Pool car park, the MCC camera failed and no classified data could be provided at this location.
- 5.2.9 At Site 18 (Battery Green Road Car Park), Intelligent Data reported a corruption of the MCC recording which lead to some data loss leading to the sample rate calculated being above 100%. The ANPR data was therefore scaled to match the MCC data.
- As detailed in the data collection report, the inbound sample rate and subsequent match rate were low at this site, 36% and 26% respectively. The survey company explained this occurred due to a member of the public moving the camera during the survey period.

Table 5.2 – ANPR count location descriptions

| ID | Description                               | Түре     |
|----|-------------------------------------------|----------|
| 1  | A12 London Road                           | Link     |
| 2  | A146 Beccles Road                         | Link     |
| 3  | A12 Yarmouth Road                         | Link     |
| 4  | Coast Road                                | Link     |
| 5  | A12 Pier Terrace (Eastern Bascule bridge) | Link     |
| 6  | A146 Bridge Road (Western Mutford bridge) | Link     |
| 7  | B1375 Gorleston Road                      | Link     |
| 8  | A1117 Millennium Way                      | Link     |
| 9  | A12 Yarmouth Road                         | Link     |
| 10 | A12 Tom Crisp Way                         | Link     |
| 11 | B1532 London Road South                   | Link     |
| 12 | B1074 Blundeston Road                     | Link     |
| 13 | Flixton Road                              | Link     |
| 14 | B1531 Waveney Drive                       | Link     |
| 15 | North Quay Retail Park                    | Car Park |

| ID | Description                                      | Түре     |
|----|--------------------------------------------------|----------|
| 16 | Links Road Car Park                              | Car Park |
| 17 | Swimming Pool Road Car Park                      | Car Park |
| 18 | Shopping Centre Car Park (Battery Green Rd exit) | Car Park |
| 19 | Shopping Centre Car Park (Gordon Road entry)     | Car Park |
| 20 | Surrey St Car Park entry                         | Car Park |
| 21 | Surrey St Car Park exit (onto Clapham Road)      | Car Park |
| 22 | Clapham Road Car Park                            | Car Park |
| 23 | St Johns Rd Car Park                             | Car Park |
| 24 | Kirkley Rise Car Park (Northern access)          | Car Park |
| 25 | Kirkley Rise Car Park (Southern access)          | Car Park |
| 26 | Kirkley Cliff Road Car Park                      | Car Park |
| 27 | Claremont Road Car Park                          | Car Park |
| 28 | Marine Parade Car Park                           | Car Park |
| 29 | Asda Car Park                                    | Car Park |

5.2.11 Figure 5.1 shows the locations of the ANPR counts located on links within the study area.



Figure 5.1 – ANPR traffic counts on links

#### 5.2.12 Figure 5.2 shows the locations of ANPR counts carried out at car parks.

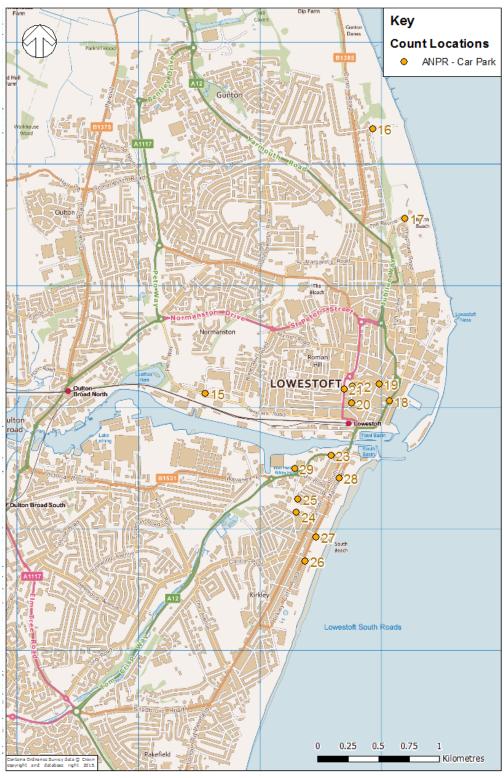



Figure 5.2 – ANPR traffic counts at car parks

#### 5.3 TRAFFIC COUNTS FOR MATRIX ESTIMATION

- 5.3.1 Table 5.3 describes the count locations which were used for matrix estimation.
- 5.3.2 The count locations used for matrix estimation were predominantly Automatic Traffic Counts (ATC). Monday to Thursday data was taken from the ATC data to provide an average flow at each location as per section 3.3 of TAG Unit M1.2. The majority of sites provided at least two continuous weeks of data, however data loss occurred at some sites as detailed in the data collection report, most notably at ATC Site 4 (A146 Beccles) Road for which only one observation was available.
- 5.3.3 The ANPR at site 3 (A12 Yarmouth Road) was used for matrix estimation; this site was located on a national speed limit dual carriageway. It was not possible for the survey company to safely lay an ATC at this location. The MCC count associated with ANPR site 3 (A12 Yarmouth Road) was used for matrix estimation at this location as it represents a key route for traffic entering and exiting the main study area.

Table 5.3 – Description of traffic counts used for matrix estimation

| ID | Description            | Түре |
|----|------------------------|------|
| 3  | Gisleham Road          | ATC  |
| 4  | A146 Beccles Road      | ATC  |
| 7  | London Road South      | ATC  |
| 8  | A12 Tom Crisp Way      | ATC  |
| 9  | A1117 Elm Tree Road    | ATC  |
| 11 | Kirkley Run            | ATC  |
| 12 | A146 Waveney Drive     | ATC  |
| 15 | Katwijk Way            | ATC  |
| 16 | A12 Battery Green Road | ATC  |
| 19 | Denmark Road           | ATC  |
| 21 | Peto Way               | ATC  |
| 22 | A1117 Normanston Drive | ATC  |
| 23 | A1144 Normanston Drive | ATC  |
| 24 | Oulton Road            | ATC  |
| 25 | B1375 Gorleston Road   | ATC  |
| 26 | A1117 Millennium Way   | ATC  |
| 27 | A12 Yarmouth Road      | ATC  |

| ID | Description           | Түре       |
|----|-----------------------|------------|
| 28 | B1385 Corton Road     | ATC        |
| 29 | A12 Yarmouth Road     | ATC        |
| 30 | B1375 Parkhill        | ATC        |
| 31 | B1074 Blundeston Road | ATC        |
| 32 | Flixton Road          | ATC        |
| 3  | A12 Yarmouth Road     | ANPR - MCC |

5.3.4 Figure 5.3 shows the locations of the counts used for matrix estimation and the calibration screenlines.

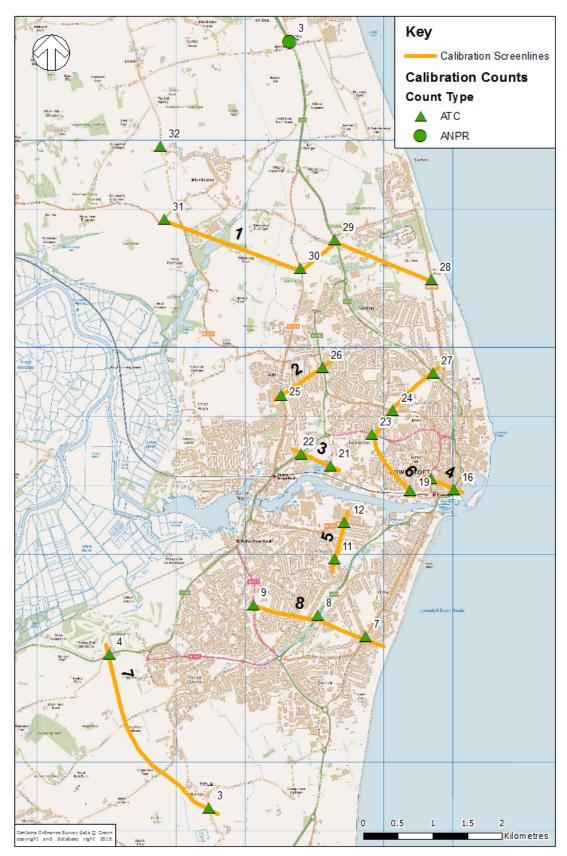



Figure 5.3 – Counts and screenlines used for calibration

#### 5.4 TRAFFIC COUNTS FOR VALIDATION

#### **LINK COUNTS**

5.4.1 Table 5.4 describes the count locations which were used for validation. As with the calibration counts the ATC data was processed to provide a Monday to Thursday average. For counts located at ANPR sites, the associated MCC link count / car park access count was used.

Table 5.4 – Description of traffic counts used for validation

| ID   | Description                                      | TYPE            |
|------|--------------------------------------------------|-----------------|
| 5    | A1145 Castleton Avenue                           | ATC             |
| 6    | A12 London Road                                  | ATC             |
| 10   | A146 Beccles Road                                | ATC             |
| 17   | A12 Old Nelson Street                            | ATC             |
| 18   | St Peter's Street                                | ATC             |
| 20   | Rotterdam Road                                   | ATC             |
| 33   | Coast Road                                       | ATC             |
| 6053 | Katwijk Way                                      | TRADS           |
| 5    | A12 Pier Terrace (eastern Bascule Bridge)        | ANPR - Link     |
| 6    | A146 Saltwater Way (western Mutford Bridge)      | ANPR - Link     |
| 15   | North Quay Retail Park                           | ANPR – Car Park |
| 16   | Links Road Car Park                              | ANPR – Car Park |
| 17   | Swimming Pool Road Car Park                      | ANPR – Car Park |
| 18   | Shopping Centre Car Park (Battery Green Rd exit) | ANPR – Car Park |
| 19   | Shopping Centre Car Park (Gordon Road entry)     | ANPR – Car Park |
| 20   | Surrey St Car Park entry                         | ANPR – Car Park |
| 21   | Surrey St Car Park exit (onto Clapham Road)      | ANPR – Car Park |
| 22   | Clapham Road Car Park                            | ANPR – Car Park |
| 23   | St Johns Rd Car Park                             | ANPR – Car Park |
| 24   | Kirkley Rise Car Park (Northern access)          | ANPR – Car Park |
| 25   | Kirkley Rise Car Park (Southern access)          | ANPR – Car Park |
| 26   | Kirkley Cliff Road Car Park                      | ANPR – Car Park |

| ID | Description            | Түре            |
|----|------------------------|-----------------|
| 28 | Marine Parade Car Park | ANPR – Car Park |
| 29 | Asda Car Park          | ANPR – Car Park |

- 5.4.2 At ANPR site 5 (A12 Pier Terrace) on the eastern Bascule Bridge, only the MCC was available. The survey company were unable to find a suitable location at which to place an ATC.
- 5.4.3 At ANPR site 6 (A146 Saltwater Way) on the western Mutford Bridge, the MCC was used for validation. This was because the ATC laid at this location showed a notable difference in traffic flow southbound in the AM peak and PM peak, compared to the MCC (see Table 5.5). As discussed in section 7, regarding matrix development, the prior matrix was developed using the ANPR data, therefore the flow on the western Mutford Bridge would be more closely aligned to the MCC associated with the ANPR rather than the ATC data.

Table 5.5 – Comparison of ATC and MCC at western Mutford Bridge (A146 Saltwater Way)

| ID        | ATC COUNT TOTAL -<br>NB | MCC COUNT TOTAL -<br>NB | ATC COUNT TOTAL -<br>SB | MCC COUNT TOTAL -<br>SB |
|-----------|-------------------------|-------------------------|-------------------------|-------------------------|
| AM peak   | 942                     | 944                     | 777                     | 904                     |
| Interpeak | 920                     | 983                     | 861                     | 931                     |
| PM peak   | 1064                    | 1114                    | 997                     | 1133                    |

The vehicle split for the western Mutford Bridge observed data was taken from the ATC data on the A146 Saltwater Way. This is because ATC was used for matrix estimation throughout the model. There was a notable difference in the vehicle splits between Car and LGV for the MCC and ATC at the western Mutford Bridge. This meant in terms of validation by vehicle type, the modelled flow was not ideally matched compared to the observed data if the MCC splits were used, which was out of keeping with adjacent counts based on ATC data. The comparison is shown in Table 5.6.

Table 5.6 – Comparison of ATC and MCC vehicle split for observed count total at western Mutford Bridge (A146 Saltwater Way)

| ID      | COUNT TOTAL | Car Total –<br>MCC | LGV TOTAL –<br>MCC | HGV Total -<br>MCC | Car Total –<br>ATC | LGV TOTAL –<br>ATC | HGV TOTAL -<br>ATC |
|---------|-------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| AM - NB | 944         | 780                | 139                | 25                 | 656                | 242                | 46                 |
| AM - SB | 904         | 716                | 152                | 36                 | 506                | 367                | 31                 |
| IP - NB | 983         | 819                | 130                | 35                 | 718                | 228                | 38                 |
| IP - SB | 931         | 780                | 120                | 31                 | 575                | 329                | 27                 |
| PM - NB | 1114        | 957                | 140                | 17                 | 852                | 228                | 34                 |
| PM - SB | 1133        | 1003               | 119                | 11                 | 749                | 370                | 13                 |

5.4.5 This issue was also prevalent for the MCC observed data on the eastern Bascule Bridge. As no ATC was available at this location, ATC 16 (A12 Battery Green Road) was used to provide the

vehicular split to the observed data, as shown in Table 5.7.

Table 5.7 – Comparison of ATC and MCC vehicle split for observed count total at eastern Bascule Bridge (A12 Pier Terrace)

| ID      | COUNT TOTAL | Car Total –<br>MCC | LGV TOTAL –<br>MCC | HGV TOTAL -<br>MCC | Car Total –<br>ATC | LGV TOTAL –<br>ATC | HGV TOTAL -<br>ATC |
|---------|-------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| AM - NB | 1531        | 1324               | 164                | 43                 | 656                | 810                | 65                 |
| AM - SB | 898         | 691                | 169                | 38                 | 530                | 322                | 46                 |
| IP - NB | 1041        | 870                | 127                | 44                 | 453                | 532                | 56                 |
| IP - SB | 1051        | 875                | 125                | 31                 | 612                | 394                | 45                 |
| PM - NB | 1104        | 966                | 110                | 28                 | 582                | 499                | 24                 |
| PM - SB | 1591        | 1419               | 147                | 25                 | 1014               | 539                | 38                 |

5.4.6 Figure 5.4 shows the locations of the counts used for validation and the validation screenlines.




Figure 5.4 – Counts and screenlines used for validation

#### MANUAL CLASSIFIED COUNTS

5.4.7 Manual classified counts were used for validation of turning movements at key junctions. Table 5.8 describes the locations of the turning counts.

Table 5.8 - Manual classified count locations

| ID | Description                                             |
|----|---------------------------------------------------------|
| 1  | London Road/Arbor Lane/A12/Tower Road                   |
| 2  | Tom Crisp Way/Stadbroke Road/Elm Tree Road              |
| 3  | Somerleyton Road/Oulton Street/Hall Lane/Gorleston Road |
| 4  | Yarmouth Road/Gorleston Road                            |
| 5  | Yarmouth Road/Leisure Way/Foxburrow Hill/Bentley Drive  |
| 6  | Yarmouth Road/Corton Road                               |
| 7  | Millennium Way/Oulton Road/Peto Way                     |
| 8  | Horn Hill/Maconochie Way/A12/Waveney Drive              |
| 9  | A12/Corton Long Lane/A12/Lowestoft Link Road            |
| 10 | A12 Waveney Road/Station Square                         |
| 11 | Commercial Road/Station Square                          |
| 12 | A12 Pier Terrace/London Road South/Belvedere Road       |
| 13 | A12 Belvedere Road/Kirkley Rise                         |
| 14 | Denmark Road/Katwijk Way                                |
| 15 | Katwijk Way/Raglan Street                               |
| 16 | A12 Waveney Road/Suffolk Road                           |
| 17 | A12 Tom Crisp Way/Blackheath Road                       |
| 18 | Saltwater Way/Victoria Road                             |
| 19 | Normanston Drive/Gorleston Road                         |
| 20 | Fir Lane/A117 Normanston Drive/Peto Way                 |
| 21 | A12/Gordon Road/Whapload Road                           |
| 22 | A12/St Peters Street                                    |
| 23 | A1144/Katwijk Way                                       |
| 24 | A146 Beccles Road/Cotmer Road                           |

# 5.4.8 Figure 5.5 shows the location of the MCCs commissioned for this study.

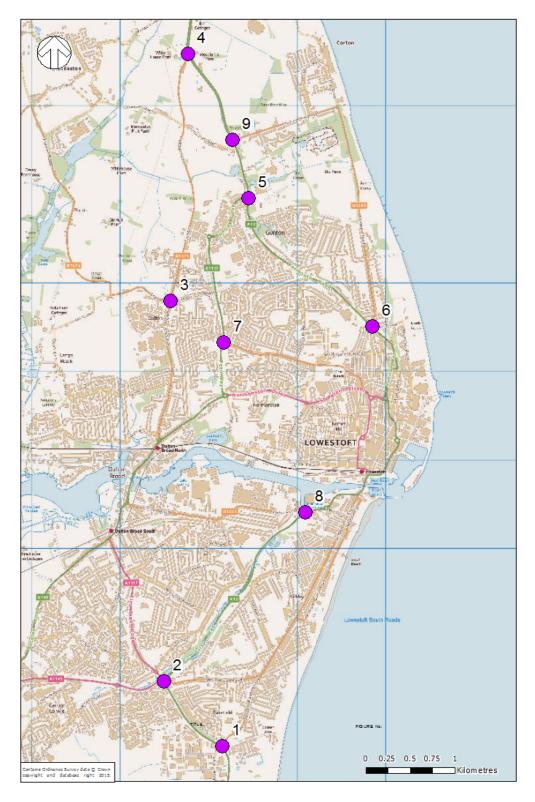



Figure 5.5 – Wider network MCC

# 5.4.9 Figure 5.6 shows the location of the MCCs carried out by AECOM.




Figure 5.6 – AECOM town centre MCC

#### 5.5 JOURNEY TIME SURVEYS FOR CALIBRATION AND VALIDATION

5.5.1 Table 5.9 describes the journey time routes which were used for calibrating and validating the model. These represent the key routes through the model study area

Table 5.9 – Description of journey time routes

| ID | DESCRIPTION                                                     | LENGTH |
|----|-----------------------------------------------------------------|--------|
| 1  | B1375 Gorleston Road                                            | 4.5km  |
| 2  | A12 Yarmouth Road / Katwijk Way                                 | 6.2km  |
| 3  | A1117 Normanston Drive / A1144 St Peter's Street                | 3.3km  |
| 4  | A1117 Bentley Drive / Millennium Way / Peto Way                 | 2.5km  |
| 5  | A12 London Road / B1532 London Road South                       | 6.7km  |
| 6  | A1145 Castleton Avenue / A12 Tom Crisp Way / A12 Belvedere Road | 6.7km  |
| 7  | B1074 / A1117 Millennium Way / Oulton Road                      | 3.9km  |
| 8  | A146 Beccles Road / A146 Waveney Drive                          | 9.5km  |
| 9  | A12 Bloodmoor Road / A1117 Elm Tree Road                        | 3.6km  |

- Trafficmaster journey time data covering key links within Suffolk was obtained from the DfT with the average journey time calculated from June 2015 data, for Monday to Thursdays only. The Trafficmaster data was related to an ITN road network, using ArcGIS this network was related to the SATURN network to allow the comparison of observed and modelled journey time.
- 5.5.3 Due to the variability of the data, the average and standard deviation of the data was analysed in order to determine the high and low confidence interval for the data. Observations outside these high and low intervals were deemed to be outliers and excluded. This ensured the average travel time was not unduly distorted by unusually high or low values.
- 5.5.4 Figure 5.7 shows the extent of the journey time routes.

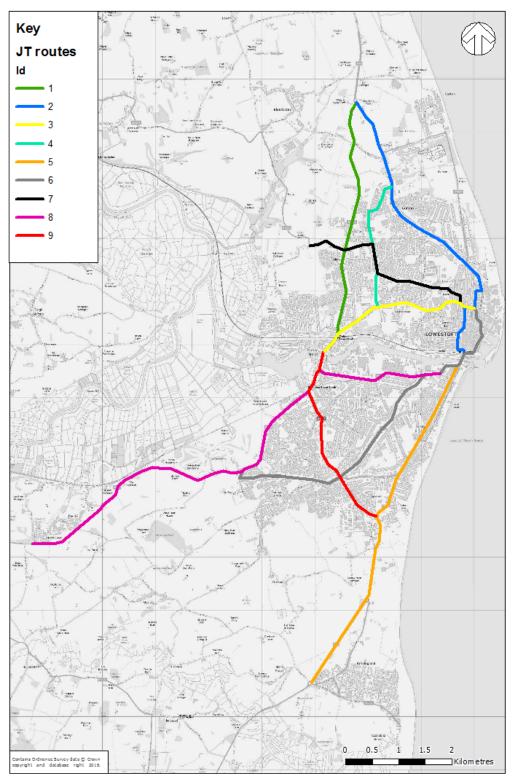



Figure 5.7 – Journey time routes

# 6 NETWORK DEVELOPMENT

### 6.1 NETWORK DATA, CODING AND CHECKING

- 6.1.1 The model network was based on the existing Lowestoft SATURN model network, updated to take account of any changes to the network that had occurred since the original Lowestoft model was built, or any significant coding errors.
- The network was verified through the use of ArcGIS, site visits and aerial photography. In particular, checks were carried out to verify:
  - Node co-ordinates
  - Link length check against measured GIS distance
  - Speed/flow relationship
  - → Link type
  - Link capacity
  - One way/two way operation
  - → Number of (effective) lanes
  - Length and position of flares
  - Any observed turn delays/penalties
  - → Location of public transport routes
  - Access points.
- 6.1.3 The network errors and warnings generated by SATURN were checked to ensure the model network is free of coding errors.
- 6.1.4 Traffic loads onto the model network from zones in the form of centroid connectors. The centroid zone connectors in the updated Lowestoft model have been reviewed and refined to realistically represent the way in which traffic joins the road network. In the Fully Modelled Area, where the zoning system is fine, specific access roads from residential and commercial areas have been used as a basis for connecting zones to the network via centroid connectors.
- Zones in the External Area, which have a large geographical coverage and significant demand associated with them, are generally connected to major routes to enter the network.

#### 6.2 JUNCTIONS

- 6.2.1 Each junction included in the ADM network required several parameters as detailed below:
  - > Lane allocations
  - Junction type
  - → Saturation flows at signal-controlled and priority-controlled junctions
  - Signal times, stages and phases
  - Circulation and saturation flows at roundabouts
  - Gap times.

#### FLOW/DELAY RELATIONSHIPS

Observations on when the eastern Bascule Bridge and western Mutford Bridge were lifted and not open to road traffic were obtained. This information was covered Tuesday 14 April 2015 to Thursday 16 April 2015. Table 6.1 details the observed data for the eastern bridge.

| Table 6.1 -   | Fastern | Rascula | Bridge | observed | lifting times |
|---------------|---------|---------|--------|----------|---------------|
| i able o. i – | Eastern | Dascule | Diluue | observed | munu umes     |

| PEAK HOUR           | AM OBS<br>OPENING | OPENING<br>TIME | IP OBS<br>OPENING | OPENING<br>TIME | PM OBS<br>OPENING | OPENING<br>TIME |
|---------------------|-------------------|-----------------|-------------------|-----------------|-------------------|-----------------|
| Tues 14 April 2015  | 0                 | 00:00:00        | 1                 | 00:04:42        | 1                 | 00:06:54        |
| Weds 15 April 2015  | 0                 | 00:00:00        | 3                 | 00:12:22        | 0                 | 00:00:00        |
| Thurs 16 April 2015 | 1                 | 00:04:17        | 0                 | 00:00:00        | 0                 | 00:00:00        |

- 6.2.3 The western Mutford Bridge was observed to only open once during the observation period, for 2 minutes 40 seconds on Wednesday 15 April 2015 at 09:51. As this occurred outside the modelled time periods, no swing bridge delay was included in the model for the western bridge.
- Table 6.2 shows the timings input into the model for the eastern Bascule Bridge. The delay was coded as a signalised node with a single stage, the red time representing when the swing bridge was lifted and with overall cycle time adding up to 3,600 seconds (1 hour). During the validation process, the AM peak bridge timings were initially coded as 257 seconds of red time to match the observed data, however during the validation process this was reduced to 227 seconds to ensure the flow validation improved on the bridge.

Table 6.2 - Eastern Bascule Bridge timings input into model

| PEAK HOUR  | GREEN TIME (SECONDS) | RED TIME (SECONDS) |
|------------|----------------------|--------------------|
| AM peak    | 3,373                | 227                |
| Inter peak | 3,344                | 256                |
| PM peak    | 3,186                | 414                |

Observations were also obtained for the two level crossings in the vicinity of the western Mutford Bridge – Bridge Road and Victoria Road. As with the swing bridge opening observations, the level crossings were observed between Tuesday 14 April 2015 and Thursday 16 April 2015. Table 6.3 shows the timings input for the Bridge Road level crossing. On average the barrier was down three times in the AM peak at this crossing, therefore the cycle time was set to 1,200 seconds (20 minutes), whereas in the interpeak and PM peak the barrier was down twice in an hour on average, the cycle time was therefore set to 1,800 seconds (30 minutes).

Table 6.3 - Bridge Road level crossing timings input into the model

| PEAK HOUR  | GREEN TIME (SECONDS) | RED TIME (SECONDS) |
|------------|----------------------|--------------------|
| AM peak    | 1,017                | 183                |
| Inter peak | 1,485                | 315                |
| PM peak    | 1,653                | 147                |

6.2.6 Table 6.4 outlines the timings input for the Victoria Road level crossing. On average the barrier was down twice in an hour at this location, therefore the cycle time was set to 1,800 seconds (30 minutes).

Table 6.4 – Victoria Road level crossing timings input into the model

| PEAK HOUR  | GREEN TIME (SECONDS) | RED TIME (SECONDS) |
|------------|----------------------|--------------------|
| AM peak    | 1,693                | 107                |
| Inter peak | 1,553                | 247                |
| PM peak    | 1,676                | 124                |

#### SIGNAL TIMINGS

- 6.2.7 Signal timings were extracted from controlled specs which were provided for eight key junctions within the study area, the junctions comprising of:
  - > Station Square / Denmark Road / Waveney Road
  - London Road South / Belvedere Road
  - Katwijk Way / Denmark Road
  - → Waveney Road / Suffolk Road / Battery Green Road
  - → Tom Crisp Way / Blackheath Road
  - Beccles Road / Cotmer Road
  - → St Peters Street / Boston Road
  - London Road / Mill Road.
- 6.2.8 The data from the controller specs were put into basic LinSig models to obtain realistic signal timings, stages and phases. The output results were inputted into the SATURN model for each time period.

#### SATURATION FLOWS

- 6.2.9 Default saturation flows were used for all junctions within the model. The default saturation flows per lane for priority junctions are:
  - Major straight ahead movement (unopposed) 1,980 pcu/hr
  - → Major left turn movement (unopposed) 1,500 pcu/hr
  - Major right turn movement (opposed) 745 pcu/hr
  - → Minor left turn movement (opposed) 700 pcu/hr
  - Minor right turn movement (opposed) 800 pcu/hr
  - → Minor straight ahead movement (opposed) 600 pcu/hr
- 6.2.10 Default saturation flows at signalised junctions are set to:
  - → Straight ahead movement 1,980 pcu/hr
  - → Left or right turn movement 1,740 pcu/hr

- 6.2.11 By default, SATURN assumes that opposing right turns at signalised junctions are "hooked" i.e. they interfere with each other. At larger junctions where there is sufficient space for traffic to turn right without being affected by the opposing right turn, it is possible to code these turns in the model so they do not interfere with each other. This was implemented at relevant junctions.
- Roundabouts require special consideration. Unlike with other junction types, each turn needs to be given the total saturation flow for the approach e.g. if a roundabout has a two-lane approach, with one lane to turn left and one to turn right, each turn should be coded with a saturation flow of 2,200. Default saturation flows (pcu/hr) adopted for roundabouts are given in Table 6.5. These values have been adopted to replicate typical ARCADY capacity estimates and have previously been utilised.

Table 6.5 - Roundabout entry capacity saturation flows

| APPROACH LANES  | NUMBER OF ENTRY LANES |       |       |       |  |  |  |
|-----------------|-----------------------|-------|-------|-------|--|--|--|
| APPROACH LAINES | 1                     | 2     | 3     | 4     |  |  |  |
| Single (3.5m)   | 1,130                 | 1,670 | 2,030 |       |  |  |  |
| Single (5.0m)   | 1,510                 | 1,940 | 2,250 | 2,450 |  |  |  |
| Dual 2 lane     |                       | 2,200 | 2,780 | 3,190 |  |  |  |
| Dual 3 lane     |                       |       | 3,330 | 3,940 |  |  |  |

6.2.13 Equivalent gap acceptance parameters are provided in Table 6.6.

Table 6.6- Roundabout gap acceptance parameters (seconds)

| APPROACH LANES  | Number of entry lanes |     |     |     |  |  |  |
|-----------------|-----------------------|-----|-----|-----|--|--|--|
| APPROACH LAINES | 1                     | 2   | 3   | 4   |  |  |  |
| Single (3.5m)   | 1.8                   | 1.3 | 1.2 |     |  |  |  |
| Single (5.0m)   | 1.4                   | 1.2 | 1.1 | 1.1 |  |  |  |
| Dual 2 lane     |                       | 1.1 | 1.0 | 0.9 |  |  |  |
| Dual 3 lane     |                       |     | 0.9 | 0.8 |  |  |  |

6.2.14 The overall circulatory saturation flow was set to be the same as the highest saturation flow on the approach arms of the roundabout. Large gyratory systems were coded as a series of priority junctions for a better representation of journey times through the junction

#### 6.3 LINKS

- 6.3.1 Each link included in the ADM network required several parameters as detailed below:
  - Distance
  - Speed

- Speed flow curve
- → Number of lanes
- → Penalties/bans.

#### SPEED/FLOW RELATIONSHIPS

- 6.3.2 Highway capacity is restrained by junctions and by the speed-flow curves allocated to links in the study area. Speed flow curves are based on standard COBA 10 values and allocated to specific links based on assessment of the road speed, width and capacity. Speed-flow curves have generally only been used on rural or inter-urban links where the characteristics of the link itself, rather than junction capacity, have an impact on traffic speed. It has been necessary in some circumstances to use speed-flow curves in suburban areas to replicate the impacts of unmodelled minor junctions.
- 6.3.3 The speed flow curves that were used are shown in Table 6.7.

Table 6.7 - Model speed flow curves

| DESCRIPTION                        | ID | FREE FLOW<br>SPEED | SPEED AT<br>CAPACITY | CAPACITY | Power value |
|------------------------------------|----|--------------------|----------------------|----------|-------------|
| Rural - D4M Motorway - 4 lanes     | 1  | 116                | 45                   | 9,999    | 3.8         |
| Rural - D3M Motorway - 3 lanes     | 2  | 116                | 45                   | 7,560    | 3.8         |
| Rural - D2M Motorway - 2 lanes     | 3  | 112                | 45                   | 4,860    | 3.9         |
| Rural - D3AP All-purpose - 3 lanes | 4  | 109                | 45                   | 6,780    | 3.7         |
| Rural – D2AP All-purpose - 2 lanes | 5  | 105                | 45                   | 4,360    | 3.7         |
| Rural - S10(Good) - 2 lanes        | 6  | 91                 | 45                   | 3,720    | 2.2         |
| Rural - S10(Good) - 1 lane         | 7  | 91                 | 45                   | 1,860    | 2.2         |
| Rural - S10(Typical) - 2 lanes     | 8  | 84                 | 45                   | 3,320    | 2.2         |
| Rural - S10(Typical) - 1 lane      | 9  | 84                 | 45                   | 1,660    | 3.1         |
| Rural - S7.3(Good) - 2 lanes       | 10 | 87                 | 45                   | 3,280    | 2.2         |
| Rural - S7.3(Good) - 1 lane        | 11 | 87                 | 45                   | 1,640    | 2.2         |
| Rural - S7.0(Typical) - 2 lanes    | 12 | 78                 | 45                   | 2,760    | 2.1         |
| Rural - S7.0(Typical) - 1 lane     | 13 | 78                 | 45                   | 1,380    | 2.1         |
| Rural - S6.5(Bad) - 2 lanes        | 14 | 67                 | 45                   | 2,020    | 1.8         |
| Rural - S6.5(Bad) - 1 lane         | 15 | 67                 | 45                   | 1,010    | 1.8         |
| Suburban - Dual(Slight devel)      | 16 | 78                 | 35                   | 3,460    | 3.3         |
| Suburban - Single(Slight devel)    | 19 | 68                 | 25                   | 3,460    | 3.7         |

| Description                            | ID | FREE FLOW<br>SPEED | SPEED AT CAPACITY | Capacity | Power value |
|----------------------------------------|----|--------------------|-------------------|----------|-------------|
| Suburban - Single(Slight devel)        | 20 | 68                 | 25                | 1,730    | 3.7         |
| Suburban - Dual(Typical devel)         | 21 | 61                 | 25                | 2,540    | 2.3         |
| Suburban - Dual(Typical devel)         | 22 | 61                 | 25                | 1,570    | 2.3         |
| Suburban - Dual(Heavy devel)           | 23 | 48                 | 25                | 1,000    | 1.6         |
| Suburban - Dual(Heavy devel)           | 24 | 48                 | 25                | 500      | 1.6         |
| Urban - Non-central(Good) - 2 lanes    | 25 | 54                 | 25                | 1,960    | 1.7         |
| Urban - Non-central(Good) - 1 lane     | 26 | 54                 | 25                | 980      | 1.7         |
| Urban - Non-central(Typical) - 2 lanes | 27 | 49                 | 25                | 1,560    | 1.6         |
| Urban - Non-central(Typical) - 1 lane  | 28 | 49                 | 25                | 780      | 1.6         |
| Urban - Non-central(Poor) - 2 lanes    | 29 | 45                 | 25                | 1,300    | 1.5         |
| Urban - Non-central(Poor) - 1 lane     | 30 | 45                 | 25                | 650      | 1.5         |
| Urban - Central(Good) - 2 lanes        | 31 | 37                 | 15                | 1,480    | 1.8         |
| Urban - Central(Good) - 1 lane         | 32 | 37                 | 15                | 740      | 1.8         |
| Urban - Central(Typical) - 2 lanes     | 33 | 34                 | 15                | 1,260    | 1.7         |
| Urban - Central(Typical) - 1 lane      | 34 | 34                 | 15                | 630      | 1.7         |
| Urban - Central(Poor) - 2 lanes        | 35 | 29                 | 15                | 900      | 1.6         |
| Urban - Central(Poor) - 1 lane         | 36 | 29                 | 15                | 450      | 1.6         |
| Small Town - Light devel - 2 lanes     | 37 | 66                 | 30                | 2,600    | 3.0         |
| Small Town - Light devel - 1 lane      | 38 | 66                 | 30                | 1,300    | 3.0         |
| Small Town - Typical devel - 2 lanes   | 39 | 57                 | 30                | 2,000    | 3.4         |
| Small Town - Typical devel - 1 lane    | 40 | 57                 | 30                | 1,000    | 3.4         |
| Small Town - Heavy devel - 2 lanes     | 41 | 47                 | 30                | 1,760    | 2.5         |
| Small Town - Heavy devel - 1 lane      | 42 | 47                 | 30                | 880      | 2.5         |
| Suburban - Single(Slight devel)        | 43 | 78                 | 35                | 1,730    | 3.7         |
| Centroid Connector - Internal          | 50 | 87                 | 87                | 9,999    | 3.3         |

#### **FIXED SPEEDS**

- 6.3.4 Within the urban area of the model speed flow curves were not necessary due to capacity restraints from the junctions at either end of the link.
- 6.3.5 These links were given fixed speeds based on their individual speed limit as obtained from imagery and site visits.
- 6.3.6 These speeds will reflect the free flow speed whilst the delay at junctions will reflect the conditions in busier periods.

# 7 TRIP MATRIX DEVELOPMENT

#### 7.1 TRAVEL DEMAND DATA

7.1.1 The matrix was initially built from observed data based on the ANPR surveys detailed in section 5. ANPR data was filtered and factored to match the associated MCC. Following assignment of the observed matrix using select link analysis, a gravity model was devised utilising synthetic trip ends based on NTEM version 6.2 and the 2011 census. The gravity model produced a synthetic matrix which was then combined with the observed matrix to produce the initial prior matrix.

#### 7.2 PARTIAL TRIP MATRICES FROM SURVEYS

- 7.2.1 For each site, trip chains were split into the following peak periods:
  - → AM peak period (07:00-10:00)
  - → Inter peak period (10:00-16:00)
  - → PM peak period (16:00-19:00)
- 7.2.2 Peak periods were used for the AM peak and PM peak rather than peak hours to increase the size of the sample which would be used to infer O-D movements within the study area.
- 7.2.3 Timestamps were available which detailed the exact time a vehicle was detected by an ANPR camera. Each unique matched vehicle was given an anonymised Vehicle Registration Number (VRN) and its data split into the different ANPR locations based on the first site at which the vehicle was detected. The site at which the vehicle was first detected was taken to be its origin for the purposes of matrix building.
- 7.2.4 The peak period for a vehicle was based on the timestamp for when it was first detected.
- 7.2.5 The total travel time for a trip chain was provided within the ANPR data, journeys taking longer than 60 minutes were excluded from the matrix building process. This was done because examination of the data highlighted many instances when vehicles were initially tracked at one location during a specific peak. However the next detection of the vehicle occurred over an hour later, often falling within a later peak period making such examples problematic to infer the origin-destination movement within the prescribed peak periods.
- 7.2.6 Table 7.1 shows the total number of observed trips with a duration of 60 minutes or less by peak period by the ANPR location at which they were first detected (for matrix purposes taken to be their origin).

Table 7.1 – Total observed ANPR trips (Less than 60 minutes in duration)

| SITE | SITE DESCRIPTION                                       | AM PEAK PERIOD (07:00-10:00) |     | INTER PEAK PERIOD<br>(10:00-16:00) |       |     | PM PEAK PERIOD<br>(16:00-19:00) |       |     |     |
|------|--------------------------------------------------------|------------------------------|-----|------------------------------------|-------|-----|---------------------------------|-------|-----|-----|
|      |                                                        | Car                          | LGV | HGV                                | Car   | LGV | HGV                             | Car   | LGV | HGV |
| 1    | A12 London Road                                        | 907                          | 156 | 80                                 | 1,569 | 220 | 152                             | 927   | 150 | 63  |
| 2    | A146 Beccles Road                                      | 788                          | 100 | 95                                 | 1,173 | 196 | 175                             | 975   | 127 | 69  |
| 3    | A12 Yarmouth Road                                      | 375                          | 42  | 13                                 | 745   | 97  | 24                              | 902   | 75  | 9   |
| 4    | Coast Road                                             | 36                           | 0   | 7                                  | 79    | 7   | 17                              | 48    | 2   | 8   |
| 5    | A12 Pier Terrace<br>(Eastern Bascule bridge)           | 494                          | 51  | 27                                 | 1,089 | 102 | 53                              | 1,044 | 100 | 13  |
| 6    | A146 Bridge Road<br>(Western Mutford bridge)           | 1,293                        | 175 | 68                                 | 1,488 | 155 | 87                              | 806   | 80  | 31  |
| 7    | B1375 Gorleston Road                                   | 680                          | 124 | 40                                 | 926   | 100 | 60                              | 640   | 67  | 23  |
| 8    | A1117 Millennium Way                                   | 449                          | 41  | 31                                 | 695   | 81  | 44                              | 412   | 33  | 9   |
| 9    | A12 Yarmouth Road                                      | 628                          | 100 | 70                                 | 1,271 | 133 | 116                             | 835   | 84  | 32  |
| 10   | A12 Tom Crisp Way                                      | 787                          | 96  | 32                                 | 711   | 70  | 46                              | 508   | 37  | 16  |
| 11   | B1532 London Road<br>South                             | 379                          | 60  | 26                                 | 499   | 51  | 30                              | 326   | 28  | 14  |
| 12   | B1074 Blundeston Road                                  | 159                          | 20  | 9                                  | 211   | 35  | 20                              | 142   | 42  | 6   |
| 13   | Flixton Road                                           | 0                            | 0   | 0                                  | 0     | 0   | 0                               | 0     | 0   | 0   |
| 14   | B1531 Waveney Drive                                    | 341                          | 34  | 12                                 | 375   | 22  | 10                              | 240   | 18  | 3   |
| 15   | North Quay Retail Park                                 | 60                           | 6   | 2                                  | 280   | 12  | 4                               | 122   | 12  | 0   |
| 16   | Links Road Car Park                                    | 4                            | 1   | 0                                  | 13    | 1   | 0                               | 3     | 0   | 0   |
| 17   | Swimming Pool Road Car<br>Park                         | 1                            | 0   | 0                                  | 12    | 0   | 0                               | 20    | 0   | 0   |
| 18   | Shopping Centre Car<br>Park (Battery Green Rd<br>exit) | 0                            | 1   | 0                                  | 48    | 1   | 0                               | 25    | 1   | 0   |
| 19   | Shopping Centre Car<br>Park (Gordon Road entry)        | 0                            | 0   | 0                                  | 5     | 0   | 0                               | 0     | 0   | 0   |
| 20   | Surrey St Car Park entry                               | 7                            | 0   | 0                                  | 43    | 2   | 0                               | 4     | 0   | 0   |

| SITE | SITE DESCRIPTION                            | AM PEAK PERIOD<br>(07:00-10:00) |       | INTER PEAK PERIOD<br>(10:00-16:00) |        |       | PM PEAK PERIOD<br>(16:00-19:00) |       |     |     |
|------|---------------------------------------------|---------------------------------|-------|------------------------------------|--------|-------|---------------------------------|-------|-----|-----|
|      |                                             | Car                             | LGV   | HGV                                | Car    | LGV   | HGV                             | Car   | LGV | HGV |
| 21   | Surrey St Car Park exit (onto Clapham Road) | 0                               | 0     | 0                                  | 38     | 1     | 0                               | 9     | 2   | 0   |
| 22   | Clapham Road Car Park                       | 3                               | 0     | 1                                  | 56     | 0     | 0                               | 10    | 0   | 0   |
| 23   | St Johns Rd Car Park                        | 1                               | 0     | 0                                  | 4      | 1     | 0                               | 4     | 0   | 0   |
| 24   | Kirkley Rise Car Park<br>(Northern access)  | 3                               | 0     | 0                                  | 12     | 0     | 0                               | 10    | 0   | 1   |
| 25   | Kirkley Rise Car Park<br>(Southern access)  | 1                               | 0     | 0                                  | 2      | 0     | 0                               | 2     | 0   | 0   |
| 26   | Kirkley Cliff Road Car<br>Park              | 0                               | 0     | 0                                  | 0      | 0     | 0                               | 1     | 0   | 0   |
| 27   | Claremont Road Car Park                     | 0                               | 0     | 0                                  | 8      | 1     | 0                               | 11    | 0   | 0   |
| 28   | Marine Parade Car Park                      | 0                               | 1     | 0                                  | 44     | 0     | 0                               | 17    | 1   | 0   |
| 29   | Asda Car Park                               | 135                             | 11    | 1                                  | 282    | 14    | 3                               | 161   | 8   | 3   |
|      | Total                                       |                                 | 1,019 | 514                                | 11,678 | 1,302 | 841                             | 8,204 | 867 | 300 |

- 7.2.7 The observed ANPR trips were then factored using MCC totals for the peak hour carried out at each of the ANPR sites. The relevant direction for the MCC was used for factor the ANPR trips depending on whether it was an origin or a destination. For ANPR trips internal to the study area, the MCC directions had to be split proportionally based on the origin and destination totals at each site. Appendix A details the MCC totals used at each site
- 7.2.8 The MCC totals were used by site for doubly constrained furnessing of the observed ANPR trips taking an average of the origin and destination factor. This produced the observed peak hour matrix totals shown in Table 7.2.

Table 7.2 – Observed ANPR matrix totals following furnessing to MCC totals

| USER CLASS | AM PEAK HOUR<br>(08:00-09:00) |                  |                  | Inter Peak Avg. Hour<br>(10:00-16:00) |       |     | PM PEAK HOUR<br>(17:00-18:00) |        |     |
|------------|-------------------------------|------------------|------------------|---------------------------------------|-------|-----|-------------------------------|--------|-----|
|            | TOTAL                         | INTER-<br>ZONALS | Intra-<br>Zonals | Car                                   | LGV   | HGV | Car                           | LGV    | HGV |
| UC1 – Car  | 7,175                         | 7,100            | 75               | 7,602                                 | 7,489 | 112 | 9,286                         | 9,239  | 48  |
| UC2 – LGV  | 1,115                         | 1,110            | 5                | 980                                   | 973   | 7   | 1,039                         | 1,031  | 7   |
| UC3 – HGV  | 298                           | 298              | 0.00             | 301                                   | 297   | 4.  | 148                           | 147    | 2   |
| Total      | 8,587                         | 8,508            | 80               | 8,882                                 | 8,759 | 123 | 10,473                        | 10,417 | 57  |

- 7.2.9 In order to distribute the ANPR matrices within the model, select link analysis at each ANPR site location was carried out using the 2001 Lowestoft SATURN model. This meant the observed data was distributed within the old zone system used for the 2001 Lowestoft SATURN model.
- 7.2.10 Analysis of the demand for each zone in this matrix showed that two zones adjacent to the eastern Bascule bridge had high numbers of trips associated with them relative to observed data available at these locations:
  - → Zone 2: covering the docks east of the A12 Battery Green Road / Waveney Road, linking to a single access at the A12 / Suffolk Road signals
  - → Zone 9: covering the commercial developments linking onto Commercial Road, linking on to a single access at the A12 Pier Terrace / Commercial Road.
- 7.2.11 Origin and destination totals for these zones were factored to match the arm in the respective MCC site 10 and site 11. The excess traffic was then distributed using select link analysis of the A12 Pier Terrace to ensure the overall matrix total was retained.
- The observed trip matrix was then converting into the new zone system used for the 2015 Lowestoft SATURN model. Correspondence between the old 2001 zone system and new 2015 zone system was done based on area, but took into account an urban outline boundary covering all built-up areas within the study area. This ensured that for instances in which zones contained large amounts of open space, the trip totals were concentrated only in the built-up area. This ensured land-use density was taken into account when the correspondence between the old and new zone system was carried out.
- 7.2.13 Following this process there was a small loss in the overall number of trips due to rounding issues as shown in Table 7.3

Table 7.3 – Observed ANPR matrix totals following correspondence between 2001 zone system and 2015 zone system

| User Class | AM PEAK HOUR<br>(08:00-09:00) |                  | INTER PEAK AVG. HOUR<br>(10:00-16:00) |       |       | PM PEAK HOUR<br>(17:00-18:00) |        |        |     |
|------------|-------------------------------|------------------|---------------------------------------|-------|-------|-------------------------------|--------|--------|-----|
|            | TOTAL                         | INTER-<br>ZONALS | INTRA-<br>ZONALS                      | Car   | LGV   | HGV                           | Car    | LGV    | HGV |
| UC1 – Car  | 7,173                         | 6,952            | 221                                   | 7,609 | 7,322 | 286                           | 9,286  | 9,024  | 262 |
| UC2 – LGV  | 1,114                         | 1,083            | 31                                    | 981   | 948   | 33                            | 1038   | 1,011  | 28  |
| UC3 – HGV  | 298                           | 287              | 11                                    | 301   | 292   | 9                             | 149    | 145    | 4   |
| Total      | 8,585                         | 8,322            | 263                                   | 8,891 | 8,563 | 323                           | 10,473 | 10,179 | 293 |

- 7.2.14 Intra-zonal trips were removed from the matrix, prior to splitting the car user class into the following three user classes:
  - Car commuting
  - Car employers business
  - Car other

7.2.15 This was carried out based on trip synthesis factors derived on a zone by zone basis as detailed in section 7.3. As factors were applied to both row and column values on a zone by zone basis this lead to a change in the overall size of the matrix.

Table 7.4 - Summary ANPR matrix totals

| USER CLASS          | AM PEAK HOUR<br>(08:00-09:00) | INTER PEAK AVG. HOUR<br>(10:00-16:00) | PM PEAK HOUR<br>(17:00-18:00) |
|---------------------|-------------------------------|---------------------------------------|-------------------------------|
| UC1 – Car Commuting | 4,079                         | 1,417                                 | 3,259                         |
| UC2 – Car EmpBus    | 485                           | 499                                   | 524                           |
| UC3 – Car Other     | 2,373                         | 5,391                                 | 5,232                         |
| UC4 – LGV           | 1,083                         | 948                                   | 1,011                         |
| UC5 – HGV           | 287                           | 292                                   | 145                           |
| Total               | 8,307                         | 8,548                                 | 10,171                        |

#### 7.3 TRIP SYNTHESIS

- 7.3.1 To account for trips that were otherwise unobserved by the ANPR surveys, a synthetic gravity model was created.
- 7.3.2 Peak period trip end totals were calculated for each model zone using trip end information from NTEM version 6.2 accessed via TEMPRO. Intersecting the model zoning system with the NTEM zones, NTEM trip ends were split proportionally to create synthetic trip ends totals for each model zone. 2011 work place zones and census output areas were used to determine the employment and housing numbers in the model zone system, these totals were used to help proportion the NTEM synthetic trip end totals.
- 7.3.3 NTEM trips were output by trip purpose. Three car user classes were made up of the following NTEM trip purposes:
  - → Car commuting:
    - Home-Based Work
    - Home-Based Education
  - Car employers business:
    - Home-Based Employers Business
    - Non-Home-Based Employers Business
  - Car other:
    - Home-Based Shopping
    - Home-Based Recreation / Social
    - Home-Based Personal Business
    - Home-Based Visiting Friends & Relatives
    - Home-Based Holiday / Day Trip
    - Non-Home-Based Work

- Non-Home-Based Education
- Non-Home-Based Shopping
- Non-Home-Based Recreation / Social
- Non-Home-Based Personal Business
- Non-Home-Based Holiday / Day Trip
- 7.3.4 The trips were factored from the peak periods available within NTEM to represent a peak hour using factors from local ATC as shown in Table 7.5.:

Table 7.5 – Peak period to peak hour factors

| USER CLASS                                                        | Factor |
|-------------------------------------------------------------------|--------|
| AM peak period (07:00-10:00) to AM peak hour factor (08:00-09:00) | 2.63   |
| Inter peak period (10:00-16:00) to average hour factor            | 6.00   |
| PM peak period (16:00-18:00) to PM peak hour factor (17:00-18:00) | 1.84   |

#### 7.4 MERGING DATA FROM SURVEYS AND TRIP SYNTHESIS

- 7.4.1 The observed trip matrix was combined with the synthetic matrix using the gravity model.
- 7.4.2 The SATURN model was skimmed to produce generalised cost matrices, which were then used to distribute the synthetic trip end totals according to the following formula:

$$T_{ij} = O_i * D_j * \exp(-\beta * C_{ij})$$

- 7.4.3 Thus a trip (T) between any given origin-destination pair is defined as a function of total origin trips (O), total destination trips (D), generalised cost (C), and a deterrence parameter (β). The resultant trip matrices were assigned, and the costs re-skimmed. This process was repeated until the relative gap between the matrices was less than 1% on three successive iterations.
- 7.4.4 Due to there being few zero values in the observed matrix, a threshold was set at which trip ends within the gravity model would replace the values in the observed matrix. The thresholds for each peak were set as shown in Table 7.6.

Table 7.6 - Gravity model infill thresholds

| Реак                     | THRESHOLD |
|--------------------------|-----------|
| AM peak (08:00-09:00)    | 5         |
| Inter peak (10:00-16:00) | 0.1       |
| PM peak (17:00-18:00)    | 0.05      |

- 7.4.5 Trip length distributions were calculated and compared for known movements in the observed ANPR matrix. The results were analysed and the beta value adjusted with the gravity model rerun to produce an optimal fit between synthetic and observed trips. Attention was also paid to the distribution of the full matrix of synthetic trips to ensure close approximation to likely trip lengths.
- 7.4.6 The  $\beta$  values used within the gravity model are shown in Table 7.7.

Table 7.7 – Beta (β) values used within gravity model

| USER CLASS       | AM PEAK HOUR<br>(0800-0900) | Inter Peak<br>Avg. Hour<br>(1000-1600) | PM PEAK HOUR<br>(1700-1800) |
|------------------|-----------------------------|----------------------------------------|-----------------------------|
| Car commuting    | 0.91                        | 0.39                                   | 0.9                         |
| Car emp business | 0.96                        | 0.33                                   | 0.9                         |
| Car other        | 0.71                        | 0.3                                    | 0.9                         |

7.4.7 The r-squared values that were achieved for each car user class across the three peaks are shown in Table 7.8.

Table 7.8 - R-square results from gravity model

| USER CLASS       | AM PEAK HOUR<br>(0800-0900) | Inter Peak<br>Avg. Hour<br>(1000-1600) | PM PEAK HOUR<br>(1700-1800) |
|------------------|-----------------------------|----------------------------------------|-----------------------------|
| Car commuting    | 0.729                       | 0.887                                  | 0.592                       |
| Car emp business | 0.697                       | 0.872                                  | 0.629                       |
| Car other        | 0.911                       | 0.881                                  | 0.838                       |
| Car overall      | 0.816                       | 0.892                                  | 0.761                       |

7.4.8 Appendix B contains details of the trip length distribution and changes applied to the matrix by the gravity model.

# 7.4.9 Following the gravity model infill, the prior matrix totals are shown in Table 7.9.

Table 7.9 – Prior matrix totals

| USER CLASS          | AM PEAK HOUR<br>(0800-0900) | Inter Peak<br>Avg. Hour<br>(1000-1600) | PM PEAK HOUR<br>(1700-1800) |
|---------------------|-----------------------------|----------------------------------------|-----------------------------|
| UC1 – Car Commuting | 6716                        | 1970                                   | 4631                        |
| UC2 – Car EmpBus    | 7401                        | 723                                    | 1034                        |
| UC3 – Car Other     | 3529                        | 6513                                   | 6850                        |
| UC4 – LGV           | 1083                        | 948                                    | 1011                        |
| UC5 – HGV           | 287                         | 292                                    | 145                         |
| Total               | 12355                       | 10447                                  | 13672                       |

# 8 NETWORK CALIBRATION AND VALIDATION

#### 8.1 NETWORK CALIBRATION

- 8.1.1 Network calibration was carried out using the initial prior matrix to assist with checks of the network. The initial checks included:
  - Link speeds
  - Link flows
  - Junction delays
  - Volume over Capacity (V/C) ratios.
- 8.1.2 The junctions were also checked to ensure that the capacity of the junction was not less than the counts at any arms.
- 8.1.3 The modelled delay was not analysed due to no observed data being collected.
- 8.1.4 Following on from these adjustments the initial matrix was re-run and in addition the observed flows were checked against the modelled flow to ensure they were not significantly higher or lower.
- 8.1.5 The delays were rechecked to isolate any that were unacceptably lower than the observed delays.
- 8.1.6 The routes through the network were checked which focussed on ensuring that the routing over the two existing bridges are correct as well as the other main strategic routes through Lowestoft.
- 8.1.7 The routes taken by HGV were also checked to confirm that certain links with weight or height restrictions had the appropriate ban on them.
- 8.1.8 The route choice will be discussed in greater detail in Section 9 of this report.

#### 8.2 NETWORK VALIDATION

- 8.2.1 The journey time routes were assessed with the initial prior matrix to sense check the time it takes to travel on certain links. This indicated any junctions that had unexpected delays or link speeds that were consistently less than the speed limit.
- 8.2.2 Journey times that had a difference of greater than 25% versus the observed time were checked to confirm that all the characteristics as set out in Section 6 for both links and junctions were consistent with the actual road network.
- 8.2.3 The link characteristics were also checked on any links where the observed count and modelled flow had a difference of 25% or more.
- 8.2.4 These checks allowed full confidence that the model reflected the real situation as close as possible.

# 9 ROUTE CHOICE CALIBRATION AND VALIDATION

#### 9.1 ROUTE CHOICE CALIBRATION

- 9.1.1 The generalised costs have an effect on the route choice made by different user class and trip purposes.
- 9.1.2 Generalised costs were calculated using values of time, GDP growth rates, purpose splits, and vehicle operating costs recommended by the DfT for use in economic appraisals of transport projects in England. These values are presented in the November 2014 TAG data book and follow the guidance within the latest version of WebTAG Unit A1.3. The values calculated for use in the base year models are shown in Table 9.1 and Table 9.2. Table 9.1 outlines the Pence per Minute (PPM) values by peak period and vehicle class, whilst Table 9.2 shows this in terms of Price per Kilometre (PPK).

Table 9.1 - Generalised cost parameters - pence per minute (PPM)

| PEAK | CAR –<br>COMMUTING | Car – Employers<br>Business | Car – Other | LGV   | HGV   |
|------|--------------------|-----------------------------|-------------|-------|-------|
| AM   | 13.74              | 46.57                       | 17.49       | 20.98 | 21.25 |
| IP   | 13.63              | 45.51                       | 18.18       | 20.98 | 21.25 |
| PM   | 13.44              | 44.78                       | 18.72       | 20.98 | 21.25 |

Table 9.2 - Generalised cost parameters - pence per kilometre (PPK)

| PEAK | CAR –<br>COMMUTING | Car – Employers<br>Business | Car – Other | LGV   | HGV   |
|------|--------------------|-----------------------------|-------------|-------|-------|
| AM   | 6.70               | 13.38                       | 6.70        | 13.66 | 37.35 |
| IP   | 6.70               | 13.38                       | 6.70        | 13.66 | 37.35 |
| PM   | 6.70               | 13.38                       | 6.70        | 13.66 | 37.35 |

- 9.1.3 Due to heavy goods vehicles favouring shorter slower routes over the longer faster routes such as trunk roads the HGV routes were looked at in greater detail.
- 9.1.4 The HGV route check looked at any roads that were unsuitable for HGV such as London Road and the appropriate ban was added to these.

## 9.2 ROUTE CHOICE VALIDATION

- 9.2.1 The routes that were chosen to validate the route choice were based on the criteria set out in TAG Unit M3.1 (January 2014):
  - Relate to significant number of trips
  - → Are of significant length or cost

- → Pass through areas of interest
- → Include both directions of travel
- → Link different compass areas
- → Coincide with journey time routes as appropriate.
- 9.2.2 Routes were plotted for all user classes. Guidance presented in section 7.3 of TAG Unit M3.1 (January 2014), with the number of OD pairs determined as follows:

Number of OD pairs =  $(number of zones)^{0.25} x number of user classes$ 

Based on the initial proposed zoning system, this equates to 14 routes. The routes that were chosen in the appraisal specification report (Sept 2015) and can be seen in Table 9.3 were used to validate the route choice.

Table 9.3 - OD route checks

| Route | ORIGIN | ORIGIN NAME | DESTINATION | DESTINATION NAME                                          |
|-------|--------|-------------|-------------|-----------------------------------------------------------|
| 1     |        |             | 119         | Katwijk Way, Lowestoft                                    |
| 2     |        |             | 122         | Waveney Drive (between A12 & Kirkley Run)                 |
| 3     |        |             | 130         | Borrow Road, Oulton                                       |
| 4     | 102    | Corton      | 131         | Windward Way, Lowestoft                                   |
| 5     |        |             | 136         | Pakefield Street, Pakefield                               |
| 6     |        |             | 143         | The Street, Carlton Colville                              |
| 7     |        |             | 149         | Kessingland                                               |
| 8     |        |             | 101         | Corton Road, Gunton                                       |
| 9     |        |             | 104         | Blundeston                                                |
| 10    |        |             | 113         | Higher Drive, Normanston                                  |
| 11    | 149    | Kessingland | 114         | Spashett Road, Lowestoft                                  |
| 12    |        | j           | 120         | Rotterdam Road, Lowestoft                                 |
| 13    |        |             | 122         | Waveney Drive (between A12 & Kirkley Run)                 |
| 14    |        |             | 128         | A146 Beccles Road (near Burnt Hill Lane),<br>Oulton Broad |

- 9.2.3 The results of these routes can be seen in Appendix C.
- 9.2.4 The routes were assessed based on the best fit route taking particular interest in which bridge was used and if the key strategic routes were being utilised for the longer journeys.
- 9.2.5 The O-D trees in Appendix C look at user class 1 (Car Commuting) for the three time periods.
- 9.2.6 In the AM peak all the routes starting from zone 102 use a logical route. The choice of bridges is accurate especially between Corton to Pakefield (zone 102 and zone 136) and Corton to Oulton (zone 102 and zone 130) while longer trips are using the strategic links for example between Corton to Kessingland (zone 102 and zone 149) and Corton to Carlton Colville (zone 102 and zone 143). The trips between Corton and Waveney Drive (zone 102 and zone 122) use the eastern bascule bridge when either bridge would be appropriate for these trips.
- 9.2.7 The routes starting from Kessingland (zone 149) use the most strategic routes especially for longer journeys such as Kessingland to Gunton (zone 149 and zone 101) and Kessingland to Blundeston (zone 149 and zone 104). The split between the bridges is also acceptable with trips included between Kessingland to Normanston (zone 149 and zone 113) and Kessingland to Rotterdam Road (zone 149 and zone 120) uses the bridge which provides the best fit route.
- 9.2.8 The inter peak shows that some routes have multiple options with traffic using more than one route in some of the OD pairs for example between Corton to Oulton (zone 102 and zone 130) and Kessingland to Gunton (zone 149 and zone 101). The route between Kessingland to Normanston (zone 149 and zone 113) shows a split between both the eastern and western bridges.
- 9.2.9 The PM peak routes also show some route choice between certain OD pairs. All of the routes in the PM peak match the routes in either the AM peak or the interpeak if not both.
- 9.2.10 All of the routes generally remain consistent between the three peaks.
- 9.2.11 User class 2 and user class 3 (Car Employer's Business & Car Other) show the same route choices as user class 1 for all routes in the AM peak and PM peak.
- 9.2.12 The interpeak shows an increase amount of route choice for user class 2 and user class 3. These are all minor route choices and the main strategic routes remain consistent.
- 9.2.13 User class 4 (LGV) has only one small difference compared to the car user classes within the AM peak and PM peak. In the interpeak two routes show a change in local route whilst retaining the same strategic routes.
- 9.2.14 HGV (user class 5) show increased variance in their route choice which is expected. The HGV user class will prioritise distance over time as well as having to avoid banned turns and therefore show some alternative route choice.

# 10 TRIP MATRIX CALIBRATION AND VALIDATION

#### 10.1 TRIP MATRIX VALIDATION

- The initial prior matrix was created as explained in Section 7 of this report. The initial prior matrix was assigned within the model and the screenline performance analysed.
- The observed data was split into calibration and validation counts, the validation counts were not used in any matrix adjustment or matrix estimation.
- 10.1.3 Section 3.2 of TAG Unit M3.1 (January 2014) stipulates modelled flows across screenlines for each vehicle type should be within 5% of observed flows. WebTAG recommends that this should apply to "all, or nearly all" screenlines. However, due to the relatively low overall flows through the screenlines a difference between the modelled and observed flow of within 5% was considered difficult to. Therefore in this instance a GEH across the screenline of 4.0 or below has been considered in this report when looking at screenline performance. This approach is compliant with previous versions of WebTAG. We have applied a threshold of 85% of screenline totals to meet this criterion.

10.1.4 There are six screenlines which are used as part of the validation process and five which is part of the calibration process as set out in section 5 of this report. The results of the screenlines for the AM peak can be seen in Table 10.1.

Table 10.1 - Initial prior matrix screenline validation and calibration results - AM Peak

| SCREENLINE |                    | 020501/52   | Monsusa  | Distribution | OF.II      |        |
|------------|--------------------|-------------|----------|--------------|------------|--------|
| ID         | Name               | Туре        | Observed | Modelled     | DIFFERENCE | GEH    |
| 1          | Screenline 1 - NB  | Calibration | 1,304    | 761          | -42%       | 16.893 |
| 2          | Screenline 1 - SB  | Calibration | 1,032    | 1,019        | -1%        | 0.419  |
| 3          | Screenline 2 - NB  | Calibration | 959      | 1,007        | 5%         | 1.525  |
| 4          | Screenline 2 - SB  | Calibration | 933      | 781          | -16%       | 5.202  |
| 5          | Screenline 3 - NB  | Calibration | 1,082    | 1,233        | 14%        | 4.434  |
| 6          | Screenline 3 - SB  | Calibration | 824      | 833          | 1%         | 0.330  |
| 7          | Screenline 4 - NB  | Calibration | 1,086    | 965          | -11%       | 3.778  |
| 8          | Screenline 4 - SB  | Calibration | 705      | 761          | 8%         | 2.078  |
| 9          | Screenline 5 - EB  | Calibration | 440      | 380          | -14%       | 2.982  |
| 10         | Screenline 5 - WB  | Calibration | 313      | 224          | -28%       | 5.438  |
| 11         | Screenline 6 - EB  | Calibration | 1,749    | 1,703        | -3%        | 1.109  |
| 12         | Screenline 6 - WB  | Calibration | 1,200    | 917          | -24%       | 8.691  |
| 13         | Screenline 7 - EB  | Calibration | 660      | 1,199        | 82%        | 17.694 |
| 14         | Screenline 7 - WB  | Calibration | 687      | 1,075        | 56%        | 13.055 |
| 15         | Screenline 8 - NB  | Calibration | 1,585    | 1,702        | 7%         | 2.883  |
| 16         | Screenline 8 - SB  | Calibration | 1,096    | 1,364        | 24%        | 7.644  |
| 19         | Screenline 9 - NB  | Validation  | 2,475    | 2,682        | 8%         | 4.076  |
| 20         | Screenline 9 - SB  | Validation  | 1,802    | 1,959        | 9%         | 3.620  |
| 21         | Screenline 10 - NB | Validation  | 1,639    | 1,895        | 16%        | 6.096  |
| 22         | Screenline 10 - SB | Validation  | 1,373    | 1,586        | 16%        | 5.543  |

## 10.1.5 The results for the Interpeak can be seen in Table 10.2.

Table 10.2: Initial prior matrix screenline validation and calibration results - Inter Peak

| SCREENLINE |                    | Opernyen    | Modelled | Difference | GEH        |        |  |
|------------|--------------------|-------------|----------|------------|------------|--------|--|
| ID         | Name               | Туре        | Observed | IVIODELLED | DIFFERENCE | GLII   |  |
| 1          | Screenline 1 - NB  | Calibration | 963      | 470        | -51%       | 18.406 |  |
| 2          | Screenline 1 - SB  | Calibration | 935      | 695        | -26%       | 8.411  |  |
| 3          | Screenline 2 - NB  | Calibration | 884      | 718        | -19%       | 5.852  |  |
| 4          | Screenline 2 - SB  | Calibration | 864      | 667        | -23%       | 7.136  |  |
| 5          | Screenline 3 - NB  | Calibration | 1,086    | 1,247      | 15%        | 4.720  |  |
| 6          | Screenline 3 - SB  | Calibration | 1,200    | 981        | -18%       | 6.621  |  |
| 7          | Screenline 4 - NB  | Calibration | 788      | 587        | -25%       | 7.659  |  |
| 8          | Screenline 4 - SB  | Calibration | 814      | 782        | -4%        | 1.142  |  |
| 9          | Screenline 5 - EB  | Calibration | 367      | 193        | -47%       | 10.407 |  |
| 10         | Screenline 5 - WB  | Calibration | 398      | 300        | -25%       | 5.254  |  |
| 11         | Screenline 6 - EB  | Calibration | 1,353    | 1,190      | -12%       | 4.578  |  |
| 12         | Screenline 6 - WB  | Calibration | 1,391    | 752        | -46%       | 19.530 |  |
| 13         | Screenline 7 - EB  | Calibration | 609      | 1,089      | 79%        | 16.491 |  |
| 14         | Screenline 7 - WB  | Calibration | 610      | 955        | 57%        | 12.328 |  |
| 15         | Screenline 8 - NB  | Calibration | 1,257    | 1,239      | -1%        | 0.511  |  |
| 16         | Screenline 8 - SB  | Calibration | 1,304    | 1,456      | 12%        | 4.085  |  |
| 19         | Screenline 9 - NB  | Validation  | 2,024    | 1,944      | -4%        | 1.803  |  |
| 20         | Screenline 9 - SB  | Validation  | 1,982    | 2,126      | 7%         | 3.181  |  |
| 21         | Screenline 10 - NB | Validation  | 1,365    | 1,512      | 11%        | 3.864  |  |
| 22         | Screenline 10 - SB | Validation  | 1,385    | 1,615      | 17%        | 5.942  |  |

## 10.1.6 The screenline results for the PM peak can be seen in Table 10.3.

Table 10.3 - Initial prior matrix screenline validation and calibration results - PM Peak

| SCREENLINE |                    | Observed    | Modelled | Difference | GEH        |        |
|------------|--------------------|-------------|----------|------------|------------|--------|
| ID         | Name               | Туре        | OBSERVED | IVIODELLED | DIFFERENCE | GER    |
| 1          | Screenline 1 - NB  | Calibration | 1,294    | 751        | -42%       | 16.969 |
| 2          | Screenline 1 - SB  | Calibration | 1,450    | 1,005      | -31%       | 12.704 |
| 3          | Screenline 2 - NB  | Calibration | 1,088    | 985        | -9%        | 3.199  |
| 4          | Screenline 2 - SB  | Calibration | 1,212    | 1,003      | -17%       | 6.287  |
| 5          | Screenline 3 - NB  | Calibration | 1,031    | 1,586      | 54%        | 15.353 |
| 6          | Screenline 3 - SB  | Calibration | 1,257    | 1,413      | 12%        | 4.265  |
| 7          | Screenline 4 - NB  | Calibration | 764      | 615        | -20%       | 5.676  |
| 8          | Screenline 4 - SB  | Calibration | 1,136    | 1,013      | -11%       | 3.756  |
| 9          | Screenline 5 - EB  | Calibration | 404      | 278        | -31%       | 6.823  |
| 10         | Screenline 5 - WB  | Calibration | 650      | 472        | -27%       | 7.502  |
| 11         | Screenline 6 - EB  | Calibration | 1,470    | 1,618      | 10%        | 3.757  |
| 12         | Screenline 6 - WB  | Calibration | 1,783    | 1,340      | -25%       | 11.214 |
| 13         | Screenline 7 - EB  | Calibration | 938      | 1,294      | 38%        | 10.648 |
| 14         | Screenline 7 - WB  | Calibration | 690      | 1,086      | 57%        | 13.271 |
| 15         | Screenline 8 - NB  | Calibration | 1,443    | 1,434      | -1%        | 0.234  |
| 16         | Screenline 8 - SB  | Calibration | 1,624    | 1,999      | 23%        | 8.817  |
| 19         | Screenline 9 - NB  | Validation  | 2,218    | 2,354      | 6%         | 2.844  |
| 20         | Screenline 9 - SB  | Validation  | 2,724    | 2,988      | 10%        | 4.940  |
| 21         | Screenline 10 - NB | Validation  | 1,753    | 1,854      | 6%         | 2.367  |
| 22         | Screenline 10 - SB | Validation  | 1,713    | 2,049      | 20%        | 7.748  |

#### 10.2 TRIP MATRIX CALIBRATION

#### ADJUSTED PRIOR MATRIX

- To improve on these results scaling was used on a selection of the calibration counts to produce an adjusted prior matrix. This looked at the difference between the modelled and observed data and adjusted the matrix to either add or remove trips between OD pairs which used those routes.
- The counts on the eastern and western bridge were not scaled as these already had acceptable GEH values and could act as a check that the matrix was not being distorted by the scaling process.
- Table 10.4 shows the number of trips in each user class for the initial and adjusted prior matrix.

Table 10.4 - Pre and post prior matrix adjustment trip totals

| USER CLASS          | AM PEAK HOUR<br>(08:00-09:00) |           | INTER PEAK<br>(10:00- | Avg. Hour<br>-16:00) | PM PEAK HOUR<br>(17:00-18:00) |           |
|---------------------|-------------------------------|-----------|-----------------------|----------------------|-------------------------------|-----------|
|                     | INITIAL PRIOR                 | ADJ PRIOR | INITIAL PRIOR         | ADJ PRIOR            | INITIAL PRIOR                 | ADJ PRIOR |
| UC1 – Car Commuting | 6,716                         | 5,735     | 1,970                 | 1,724                | 4,631                         | 4,019     |
| UC2 – Car EmpBus    | 741                           | 646       | 723                   | 693                  | 1,034                         | 932       |
| UC3 – Car Other     | 3,529                         | 3,491     | 6,513                 | 6,183                | 6,850                         | 6,166     |
| UC4 – LGV           | 1,083                         | 2,454     | 948                   | 2,760                | 1,011                         | 3,019     |
| UC5 – HGV           | 287                           | 842       | 292                   | 814                  | 145                           | 416       |
| Total               | 12,355                        | 13,167    | 10,447                | 12,174               | 13,672                        | 14,553    |

Table 10.5 to Table 10.7 show the screenline performance of the adjusted prior matrix. These results show a major improvement in how the modelled flows match the observed screenlines, with the majority of screenlines showing a GEH of 4.0 or below.

Table 10.5 - Adjusted prior matrix screenline validation and calibration results - AM Peak

| SCREENLINE |                    | Opospysp    | Modelled            | Difference | CEH        |       |
|------------|--------------------|-------------|---------------------|------------|------------|-------|
| ID         | Name               | Туре        | Observed Modelled I |            | DIFFERENCE | GEH   |
| 1          | Screenline 1 - NB  | Calibration | 1,304               | 1,157      | -11%       | 4.185 |
| 2          | Screenline 1 - SB  | Calibration | 1,032               | 1,352      | 31%        | 9.256 |
| 3          | Screenline 2 - NB  | Calibration | 959                 | 897        | -6%        | 2.041 |
| 4          | Screenline 2 - SB  | Calibration | 933                 | 951        | 2%         | 0.576 |
| 5          | Screenline 3 - NB  | Calibration | 1,082               | 960        | -11%       | 3.823 |
| 6          | Screenline 3 - SB  | Calibration | 824                 | 840        | 2%         | 0.572 |
| 7          | Screenline 4 - NB  | Calibration | 1,086               | 1,003      | -8%        | 2.568 |
| 8          | Screenline 4 - SB  | Calibration | 705                 | 723        | 3%         | 0.683 |
| 9          | Screenline 5 - EB  | Calibration | 440                 | 422        | -4%        | 0.886 |
| 10         | Screenline 5 - WB  | Calibration | 313                 | 263        | -16%       | 2.953 |
| 11         | Screenline 6 - EB  | Calibration | 1,749               | 1,701      | -3%        | 1.157 |
| 12         | Screenline 6 - WB  | Calibration | 1,200               | 1,232      | 3%         | 0.925 |
| 13         | Screenline 7 - EB  | Calibration | 660                 | 747        | 13%        | 3.296 |
| 14         | Screenline 7 - WB  | Calibration | 687                 | 695        | 1%         | 0.287 |
| 15         | Screenline 8 - NB  | Calibration | 1,585               | 1,503      | -5%        | 2.090 |
| 16         | Screenline 8 - SB  | Calibration | 1,096               | 1,075      | -2%        | 0.634 |
| 19         | Screenline 9 - NB  | Validation  | 2,475               | 2,370      | -4%        | 2.133 |
| 20         | Screenline 9 - SB  | Validation  | 1,802               | 1,812      | 1%         | 0.235 |
| 21         | Screenline 10 - NB | Validation  | 1,639               | 1,540      | -6%        | 2.477 |
| 22         | Screenline 10 - SB | Validation  | 1,373               | 1,289      | -6%        | 2.297 |

Table 10.6 - Adjusted prior matrix screenline validation and calibration results - Inter Peak

| SCREENLINE |                    | 0           | NA       | <b>D</b> | OFIL       |       |
|------------|--------------------|-------------|----------|----------|------------|-------|
| ID         | Name               | Туре        | Observed | Modelled | DIFFERENCE | GEH   |
| 1          | Screenline 1 - NB  | Calibration | 963      | 1,076    | 12%        | 3.551 |
| 2          | Screenline 1 - SB  | Calibration | 935      | 918      | -2%        | 0.562 |
| 3          | Screenline 2 - NB  | Calibration | 884      | 996      | 13%        | 3.666 |
| 4          | Screenline 2 - SB  | Calibration | 864      | 943      | 9%         | 2.613 |
| 5          | Screenline 3 - NB  | Calibration | 1,086    | 1,117    | 3%         | 0.940 |
| 6          | Screenline 3 - SB  | Calibration | 1,200    | 1,163    | -3%        | 1.066 |
| 7          | Screenline 4 - NB  | Calibration | 788      | 697      | -12%       | 3.332 |
| 8          | Screenline 4 - SB  | Calibration | 814      | 828      | 2%         | 0.480 |
| 9          | Screenline 5 - EB  | Calibration | 367      | 281      | -23%       | 4.786 |
| 10         | Screenline 5 - WB  | Calibration | 398      | 422      | 6%         | 1.177 |
| 11         | Screenline 6 - EB  | Calibration | 1,353    | 1,162    | -14%       | 5.393 |
| 12         | Screenline 6 - WB  | Calibration | 1,391    | 1,386    | 0%         | 0.144 |
| 13         | Screenline 7 - EB  | Calibration | 609      | 697      | 15%        | 3.462 |
| 14         | Screenline 7 - WB  | Calibration | 610      | 642      | 5%         | 1.273 |
| 15         | Screenline 8 - NB  | Calibration | 1,257    | 1,360    | 8%         | 2.846 |
| 16         | Screenline 8 - SB  | Calibration | 1,304    | 1,419    | 9%         | 3.110 |
| 19         | Screenline 9 - NB  | Validation  | 2,024    | 1,899    | -6%        | 2.830 |
| 20         | Screenline 9 - SB  | Validation  | 1,982    | 2,181    | 10%        | 4.366 |
| 21         | Screenline 10 - NB | Validation  | 1,365    | 1,350    | -1%        | 0.418 |
| 22         | Screenline 10 - SB | Validation  | 1,385    | 1,281    | -8%        | 2.845 |

Table 10.7 - Adjusted prior matrix screenline validation and calibration results - PM Peak

| Screenline |                    | 020501/52   | <b>N</b> 4 | D:====   | OF.II      |       |
|------------|--------------------|-------------|------------|----------|------------|-------|
| ID         | Name               | Туре        | Observed   | Modelled | DIFFERENCE | GEH   |
| 1          | Screenline 1 - NB  | Calibration | 1,294      | 1,385    | 7%         | 2.499 |
| 2          | Screenline 1 - SB  | Calibration | 1,450      | 1,180    | -19%       | 7.448 |
| 3          | Screenline 2 - NB  | Calibration | 1,088      | 1,142    | 5%         | 1.618 |
| 4          | Screenline 2 - SB  | Calibration | 1,212      | 1,235    | 2%         | 0.650 |
| 5          | Screenline 3 - NB  | Calibration | 1,031      | 1,071    | 4%         | 1.244 |
| 6          | Screenline 3 - SB  | Calibration | 1,257      | 1,268    | 1%         | 0.305 |
| 7          | Screenline 4 - NB  | Calibration | 764        | 719      | -6%        | 1.654 |
| 8          | Screenline 4 - SB  | Calibration | 1,136      | 1,126    | -1%        | 0.301 |
| 9          | Screenline 5 - EB  | Calibration | 404        | 404      | 0%         | 0.000 |
| 10         | Screenline 5 - WB  | Calibration | 650        | 596      | -8%        | 2.150 |
| 11         | Screenline 6 - EB  | Calibration | 1,470      | 1,357    | -8%        | 3.015 |
| 12         | Screenline 6 - WB  | Calibration | 1,783      | 1,692    | -5%        | 2.186 |
| 13         | Screenline 7 - EB  | Calibration | 938        | 1,006    | 7%         | 2.172 |
| 14         | Screenline 7 - WB  | Calibration | 690        | 640      | -7%        | 1.957 |
| 15         | Screenline 8 - NB  | Calibration | 1,443      | 1,483    | 3%         | 1.049 |
| 16         | Screenline 8 - SB  | Calibration | 1,624      | 1,682    | 4%         | 1.433 |
| 19         | Screenline 9 - NB  | Validation  | 2,218      | 2,203    | -1%        | 0.319 |
| 20         | Screenline 9 - SB  | Validation  | 2,724      | 2,765    | 2%         | 0.783 |
| 21         | Screenline 10 - NB | Validation  | 1,753      | 1,608    | -8%        | 3.548 |
| 22         | Screenline 10 - SB | Validation  | 1,713      | 1,529    | -11%       | 4.570 |

#### 10.3 TRIP MATRIX ESTIMATION

- The matrix estimation process employed as part of the calibration process is designed to modify the travel patterns using the observed traffic counts. Trips are adjusted in the matrix to produce the estimated matrix, which is most likely to be consistent with the traffic counts. The matrix of trips input to matrix estimation is known as the prior matrix, while the output matrix from matrix estimation is known as the post matrix. The calibration process has used matrix estimation procedures as contained in the SATME2 program in the SATURN suite of software.
- SATME2 requires a PIJA file which represents the proportion (P) of trips between a particular origin-destination pair (IJ) which uses the counted link (A). The PIJA data is obtained through the program SATPIJA following a SATURN assignment using the SAVEIT option.
- This produces PIJA output files for each user class which are used by SATME2 along with the prior matrix to produce an updated 2015 estimated highway demand matrices which were then combined into a 'stacked' estimated matrix for assignment. No cells were frozen and there were no zonal constraints applied.
- Matrix estimation often involves an iterative process, where the first post matrix is assigned to the network and is used to update assignment costs, creating a new set of PIJA factors to create a second post matrix. This process can continue to be repeated, updating assignment costs but retaining the original prior matrix each time to prevent undue distortion of observed trip patterns. The benefit of this approach is that the post matrix will contain a better representation of the PIJA factors on counted links than the prior matrix assignment, which should result in an improved post matrix the second time around.
- 10.3.5 Further iterations can be undertaken, but typically after 3 or 4 iterations the additional benefits in terms of improved goodness of fit are small. There are no specific convergence criteria for matrix estimation, but the aim of the procedure is to improve the goodness of fit between modelled flows and counts.
- 10.3.6 The matrix estimation was carried out using the calibration counts only based on the scaled matrices for each time period.

Table 10.8 compares the matrix totals for the adjusted prior and post matrix estimation matrices for each modelled peak hour by user class. Overall, following matrix estimation, the matrix increased by 0.76% in the AM peak, there was a decrease of 1% in the inter peak and an increase of 0.87% in the PM peak.

**Table 10.8: Prior and Post Matrix Totals** 

| User Class          | AM PEAK HOUR<br>(0800-0900) |         | INTER PEAK<br>(1000- |         | PM PEAK HOUR<br>(1700-1800) |         |
|---------------------|-----------------------------|---------|----------------------|---------|-----------------------------|---------|
|                     | ADJ PRIOR                   | Post ME | Adj Prior            | Роѕт МЕ | Adj Prior                   | Post ME |
| UC1 – Car Commuting | 5,735                       | 5,447   | 1,724                | 1,696   | 4,019                       | 3,964   |
| UC2 – Car EmpBus    | 646                         | 622     | 693                  | 658     | 932                         | 904     |
| UC3 – Car Other     | 3,491                       | 3,474   | 6,183                | 5,954   | 6,166                       | 6,141   |
| UC4 – LGV           | 2,454                       | 2,855   | 2,760                | 2,919   | 3,019                       | 3,215   |
| UC5 – HGV           | 842                         | 868     | 814                  | 825     | 416                         | 456     |
| Total               | 13,167                      | 13,267  | 12,174               | 12,052  | 14,553                      | 14,680  |

10.3.8 Appendix D contains a breakdown of the individual count performance within the screenlines for the final post-ME assignment.

10.3.9 Table 10.9 to Table 10.11 detail the screenline performance of the post ME assignment.

Table 10.9: Post ME screenline validation and calibration results - AM Peak

|    | SCREENLINE         |             | OBSERVED | Modelled | DIFFERENCE | GEH   |
|----|--------------------|-------------|----------|----------|------------|-------|
| ID | Name               | Type        |          |          |            |       |
| 1  | Screenline 1 - NB  | Calibration | 1,304    | 1,277    | -2%        | 0.746 |
| 2  | Screenline 1 - SB  | Calibration | 1,032    | 1,139    | 10%        | 3.235 |
| 3  | Screenline 2 - NB  | Calibration | 959      | 960      | 0%         | 0.027 |
| 4  | Screenline 2 - SB  | Calibration | 933      | 937      | 0%         | 0.121 |
| 5  | Screenline 3 - NB  | Calibration | 1,082    | 1,085    | 0%         | 0.086 |
| 6  | Screenline 3 - SB  | Calibration | 824      | 795      | -3%        | 1.002 |
| 7  | Screenline 4 - NB  | Calibration | 1,086    | 1,041    | -4%        | 1.380 |
| 8  | Screenline 4 - SB  | Calibration | 705      | 693      | -2%        | 0.444 |
| 9  | Screenline 5 - EB  | Calibration | 440      | 438      | -1%        | 0.114 |
| 10 | Screenline 5 - WB  |             | 313      | 298      | -5%        | 0.864 |
| 11 | Screenline 6 - EB  | Calibration | 1,749    | 1,599    | -9%        | 3.668 |
| 12 | Screenline 6 - WB  | Calibration | 1,200    | 1,238    | 3%         | 1.096 |
| 13 | Screenline 7 - EB  | Calibration | 660      | 644      | -2%        | 0.611 |
| 14 | Screenline 7 - WB  |             | 687      | 688      | 0%         | 0.020 |
| 15 | Screenline 8 - NB  | Calibration | 1,585    | 1,581    | 0%         | 0.103 |
| 16 | Screenline 8 - SB  | Calibration | 1,096    | 1,097    | 0%         | 0.033 |
| 19 | Screenline 9 - NB  | Validation  | 2,475    | 2,368    | -4%        | 2.174 |
| 20 | Screenline 9 - SB  | Validation  | 1,802    | 1,670    | -7%        | 3.168 |
| 21 | Screenline 10 - NB | Validation  | 1,639    | 1,518    | -7%        | 3.040 |
| 22 | Screenline 10 - SB | Validation  | 1,373    | 1,293    | -6%        | 2.186 |

Table 10.10: Post ME screenline validation and calibration results - Inter Peak

|    | SCREENLINE         |             | OBSERVED | Modelled | DIFFERENCE | GEH   |
|----|--------------------|-------------|----------|----------|------------|-------|
| ID | Name               | Type        |          |          |            |       |
| 1  | Screenline 1 - NB  | Calibration | 963      | 926      | -4%        | 1.192 |
| 2  | Screenline 1 - SB  | Calibration | 935      | 894      | -4%        | 1.360 |
| 3  | Screenline 2 - NB  | Calibration | 884      | 887      | 0%         | 0.114 |
| 4  | Screenline 2 - SB  | Calibration | 864      | 907      | 5%         | 1.430 |
| 5  | Screenline 3 - NB  | Calibration | 1,086    | 1,127    | 4%         | 1.238 |
| 6  | Screenline 3 - SB  | Calibration | 1,200    | 1,198    | 0%         | 0.047 |
| 7  | Screenline 4 - NB  | Calibration | 788      | 764      | -3%        | 0.854 |
| 8  | Screenline 4 - SB  | Calibration | 814      | 781      | -4%        | 1.177 |
| 9  | Screenline 5 - EB  | Calibration | 367      | 368      | 0%         | 0.044 |
| 10 | Screenline 5 - WB  | Calibration | 398      | 400      | 0%         | 0.092 |
| 11 | Screenline 6 - EB  | Calibration | 1,353    | 1,289    | -5%        | 1.768 |
| 12 | Screenline 6 - WB  | Calibration | 1,391    | 1,381    | -1%        | 0.278 |
| 13 | Screenline 7 - EB  | Calibration | 609      | 627      | 3%         | 0.742 |
| 14 | Screenline 7 - WB  | Calibration | 610      | 612      | 0%         | 0.075 |
| 15 | Screenline 8 - NB  | Calibration | 1,257    | 1,291    | 3%         | 0.951 |
| 16 | Screenline 8 - SB  | Calibration | 1,304    | 1,305    | 0%         | 0.021 |
| 19 | Screenline 9 - NB  | Validation  | 2,024    | 1,912    | -6%        | 2.532 |
| 20 | Screenline 9 - SB  | Validation  | 1,982    | 2,064    | 4%         | 1.827 |
| 21 | Screenline 10 - NB | Validation  | 1,365    | 1,285    | -6%        | 2.209 |
| 22 | Screenline 10 - SB | Validation  | 1,385    | 1,228    | -11%       | 4.340 |

Table 10.11: Post ME screenline validation and calibration results - PM Peak

|    | SCREENLINE         |             | OBSERVED | Modelled | DIFFERENCE | GEH   |
|----|--------------------|-------------|----------|----------|------------|-------|
| ID | Name               | Type        |          |          |            |       |
| 1  | Screenline 1 - NB  | Calibration | 1,294    | 1,324    | 2%         | 0.842 |
| 2  | Screenline 1 - SB  | Calibration | 1,450    | 1,368    | -6%        | 2.187 |
| 3  | Screenline 2 - NB  | Calibration | 1,088    | 1,092    | 0%         | 0.122 |
| 4  | Screenline 2 - SB  | Calibration | 1,212    | 1,256    | 4%         | 1.245 |
| 5  | Screenline 3 - NB  | Calibration | 1,031    | 999      | -3%        | 0.994 |
| 6  | Screenline 3 - SB  | Calibration | 1,257    | 1,229    | -2%        | 0.798 |
| 7  | Screenline 4 - NB  | Calibration | 764      | 749      | -2%        | 0.547 |
| 8  | Screenline 4 - SB  | Calibration | 1,136    | 1,102    | -3%        | 1.020 |
| 9  | Screenline 5 - EB  | Calibration | 404      | 399      | -1%        | 0.250 |
| 10 | Screenline 5 - WB  | Calibration | 650      | 623      | -4%        | 1.057 |
| 11 | Screenline 6 - EB  | Calibration | 1,470    | 1,332    | -9%        | 3.697 |
| 12 | Screenline 6 - WB  | Calibration | 1,783    | 1,755    | -2%        | 0.669 |
| 13 | Screenline 7 - EB  | Calibration | 938      | 951      | 1%         | 0.414 |
| 14 | Screenline 7 - WB  | Calibration | 690      | 673      | -3%        | 0.669 |
| 15 | Screenline 8 - NB  | Calibration | 1,443    | 1,480    | 3%         | 0.971 |
| 16 | Screenline 8 - SB  | Calibration | 1,624    | 1,699    | 5%         | 1.846 |
| 19 | Screenline 9 - NB  | Validation  | 2,218    | 2,185    | -1%        | 0.703 |
| 20 | Screenline 9 - SB  | Validation  | 2,724    | 2,600    | -5%        | 2.403 |
| 21 | Screenline 10 - NB | Validation  | 1,753    | 1,570    | -10%       | 4.501 |
| 22 | Screenline 10 - SB | Validation  | 1,713    | 1,477    | -14%       | 5.909 |

- 10.3.10 In the AM peak, all screenlines are shown to perform well with a GEH below 4.
- The interpeak performs similarly with all the calibration screenlines achieving a GEH of less than 4. Screenline 10 southbound does not meet these criteria is close with a GEH value of 4.340.
- The PM peak again has all the calibration screenlines meeting the criteria whilst validation screenline 10 is slightly over with a GEH of 4.501 in the northbound direction. In the southbound direction, screenline 10 has a higher GEH of 5.909. This is due to ATC 10 (A146 Beccles Road) showing a high GEH in the south-west bound direction. The other two ATCs (ATC 5 on A1145 Castleton and A12 London Road) show the modelled flow closely matches the observed flow with GEH of 0.3 and 2.2 respectively.
- 10.3.13 Overall the screenline results echo the results of the link flows in indicating that the model represents and accurately reflects the observed data and indicates that the key movements around the model are accurate.

### IMPACT OF MATRIX ESTIMATION

- 10.3.14 It is important to look at the different in the trip length distribution between the adjusted prior matrix assignment and post ME matrix assignment.
- Figure 10.1, Figure 10.2 and Figure 10.3 show the trip length distributions for each peak hour model graphically comparing the adjusted prior assignment to the post matrix estimation assignment. The graphs show matrix estimation does not fundamentally alter the trip length distribution between the two assignments.

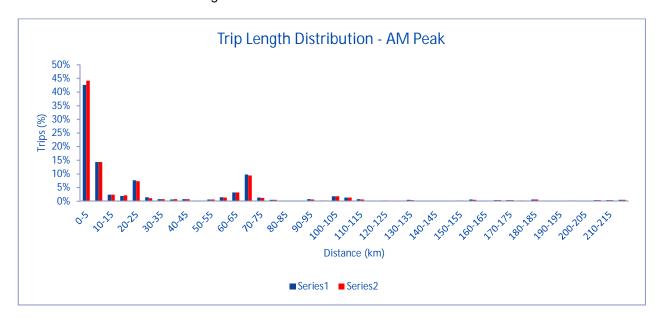



Figure 10.1: AM peak trip length distribution

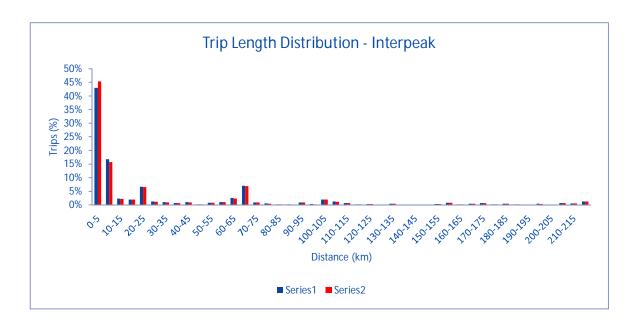



Figure 10.2: Inter peak trip length distribution

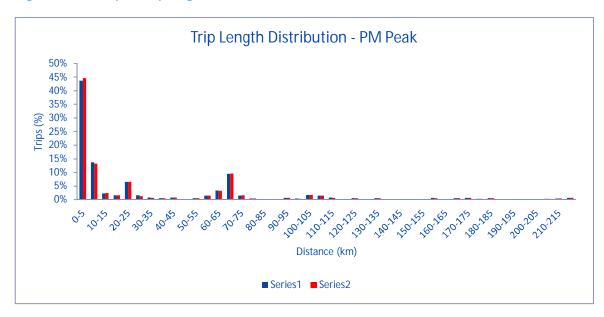



Figure 10.3: PM peak trip length distribution

**Table 10.12: Regression statistics AM Peak** 

| MEASUI  | REMENT    | REQUIREMENT          | Value            | Pass? |
|---------|-----------|----------------------|------------------|-------|
| Slope   |           | Within 0.98 and 1.02 | 0.965            | No    |
| Cells   | Intercept | Near 0               | 0.035            | Yes   |
|         | R-Sq      | > 0.95               | 0.8341           | No    |
|         | Slope     | Within 0.99 and 1.01 | 1.007            | Yes   |
| Rows    | Intercept | Near 0               | 0.019            | Yes   |
|         | R-Sq      | > 0.98               | 0.9752           | No    |
|         | Slope     | Within 0.99 and 1.01 | 0.938            | No    |
| Columns | Intercept | Near 0               | 7.221            | No    |
|         | R-Sq      | > 0.98               | 0.9569           | No    |
|         | Prior     |                      | 32.033           |       |
| Mean    | Post      | Within 5%            | Within 5% 30.914 |       |
|         | Diff      |                      | 3.5%             |       |
| 0.0     | Prior     | W                    | 54.763           | V     |
| SD      | Post      | Within 5%            | 54.353           | Yes   |
|         | Diff      |                      | 0.7%             |       |

**Table 10.13: Regression statistics Inter Peak** 

| MEASUF  | REMENT                     | REQUIREMENT          | VALUE                                                                                          | Pass? |
|---------|----------------------------|----------------------|------------------------------------------------------------------------------------------------|-------|
|         | Slope Within 0.98 and 1.02 |                      | 0.944                                                                                          | No    |
| Cells   | Intercept                  | Near 0               | 0.034                                                                                          | Yes   |
|         | R-Sq                       | > 0.95               | Near 0 0.944  Near 0 0.934  > 0.95 0.9304  ithin 0.99 and 1.01 0.96  Near 0 2.876  > 0.98 0.99 | No    |
|         | Slope                      | Within 0.99 and 1.01 | 0.96                                                                                           | No    |
| Rows    | Intercept                  | Near 0               | 2.876                                                                                          | No    |
|         | R-Sq                       | > 0.98               | 0.99                                                                                           | Yes   |
|         | Slope                      | Within 0.99 and 1.01 | 0.959                                                                                          | No    |
| Columns | Intercept                  | Near 0               | 2.942                                                                                          | No    |
|         | R-Sq                       | > 0.98               | 0.9854                                                                                         | Yes   |
|         | Prior                      |                      | 33.083                                                                                         |       |
| Mean    | Post                       | Within 5%            | 31.943                                                                                         | Yes   |
|         | Diff                       |                      | 3.4%                                                                                           |       |
|         | Prior                      |                      | 57.523                                                                                         |       |
| SD      | Post                       | Within 5%            | 54.353                                                                                         | Yes   |
|         | Diff                       |                      | 0.7%                                                                                           |       |

Table 10.14: Regression statistics PM Peak

| Measur  | REMENT                     | REQUIREMENT          | VALUE            | Pass? |
|---------|----------------------------|----------------------|------------------|-------|
|         | Slope Within 0.98 and 1.02 |                      | 0.989            | Yes   |
| Cells   | Intercept                  | Near 0               | 0.02             | Yes   |
|         | R-Sq                       | > 0.95               | 0.8325           | No    |
|         | Slope                      | Within 0.99 and 1.01 | 0.959            | No    |
| Rows    | Intercept                  | Near 0               | 5.983            | No    |
|         | R-Sq                       | > 0.98               | 0.9782           | No    |
|         | Slope                      | Within 0.99 and 1.01 | 1.036            | No    |
| Columns | Intercept                  | Near 0               | -2.913           | No    |
|         | R-Sq                       | > 0.98               | 0.975            | No    |
|         | Prior                      |                      | 32.999           |       |
| Mean    | Post                       | Within 5%            | 32.688           | Yes   |
|         | Diff                       |                      | 0.9%             |       |
|         | Prior                      |                      | 52.491           |       |
| SD      | Post                       | Within 5%            | Within 5% 52.143 |       |
|         | Diff                       |                      | 0.7%             |       |

10.3.16 The regression statistics show that for all three time periods both the mean and standard deviation are both within the criteria of 5%.

- 10.3.17 The sector to sector movements were analysed to ensure the matrix estimation process did not distort the matrix.
- 10.3.18 Table 10.15 shows the percentage difference in sector to sector movements for the AM peak.

Table 10.15: Sector to sector movement results - AM Peak

|       | 1   | 2    | 3    | 4   | 5    | TOTAL |  |
|-------|-----|------|------|-----|------|-------|--|
| 1     | 0%  | -13% | 0%   | 0%  | -4%  | -2%   |  |
| 2     | 0%  | -10% | -8%  | -9% | 11%  | -3%   |  |
| 3     | 0%  | -6%  | 0%   | 9%  | -7%  | 2%    |  |
| 4     | -6% | -4%  | -7%  | 4%  | -11% | -2%   |  |
| 5     | 2%  | 2%   | -18% | 8%  | 8%   | 5%    |  |
| Total | -2% | -3%  | -9%  | 4%  | 1%   | 1%    |  |

10.3.19 The interpeak results can be seen in Table 10.16.

Table 10.16: Sector to sector movement results - Inter Peak

|       | 1   | 2   | 3    | 4   | 5    | TOTAL |
|-------|-----|-----|------|-----|------|-------|
| 1     | 0%  | -6% | 0%   | 2%  | -13% | -3%   |
| 2     | 0%  | -5% | -5%  | -6% | -3%  | -5%   |
| 3     | -3% | -7% | 0%   | 3%  | -10% | -2%   |
| 4     | -6% | -9% | -2%  | 1%  | -5%  | -2%   |
| 5     | -6% | -3% | -12% | 5%  | 3%   | 2%    |
| Total | -5% | -6% | -4%  | 2%  | -2%  | -1%   |

10.3.20 The results for the PM peak can be seen in Table 10.17.

Table 10.17: Sector to sector movement results - PM Peak

|       | 1   | 2   | 3  | 4    | 5    | TOTAL |
|-------|-----|-----|----|------|------|-------|
| 1     | 0%  | -8% | 0% | -1%  | -15% | -5%   |
| 2     | 10% | 2%  | 4% | -12% | -2%  | -5%   |
| 3     | 0%  | -9% | 0% | 9%   | -18% | -3%   |
| 4     | 7%  | -2% | 6% | 5%   | -2%  | 2%    |
| 5     | 7%  | 7%  | 6% | 0%   | 3%   | 3%    |
| Total | 6%  | -1% | 5% | 3%   | -2%  | 1%    |

### 11 ASSIGNMENT CALIBRATION AND VALIDATION

### 11.1 MODEL CONVERGENCE

- 11.1.1 The model convergence criterion has been set out in Section 3.2.
- 11.1.2 Table 11.1, table 11.2 and table 11.3 show the convergence statistics for the AM peak, interpeak and PM peak respectively. The results show that all the models converge within the guidance that was set out in Table 3.4.

Table 11.1 - AM peak convergence results

| ITERATION | DELTA  | %FLOW | %Сар    |
|-----------|--------|-------|---------|
| 11        | 0.0006 | 95.4  | 0.00045 |
| 12        | 0.0002 | 96.8  | 0.00026 |
| 13        | 0.0001 | 98.4  | 0.00023 |
| 14        | 0.0001 | 99    | 0.00013 |
| 15        | 0.0002 | 99.6  | 0.00009 |
| 16        | 0.0001 | 99.5  | 0.00006 |

Table 11.2 - Inter peak convergence results

| ITERATION | DELTA  | %FLOW | %Сар   |
|-----------|--------|-------|--------|
| 9         | 0.0136 | 95.3  | 0.01   |
| 10        | 0.0071 | 97.3  | 0.012  |
| 11        | 0.0083 | 98.4  | 0.0064 |
| 12        | 0.0046 | 99.2  | 0.008  |
| 13        | 0.0062 | 99.1  | 0.0043 |
| 14        | 0.0033 | 99.4  | 0.0058 |

Table 11.3 - PM peak convergence results

| İTERATION | DELTA  | %FLOW | %САР    |
|-----------|--------|-------|---------|
| 26        | 0.0016 | 99.5  | 0.0042  |
| 27        | 0.0044 | 97.2  | 0.0017  |
| 28        | 0.0011 | 98.3  | 0.0018  |
| 29        | 0.0015 | 99.1  | 0.0027  |
| 30        | 0.0017 | 99.8  | 0.00089 |
| 31        | 0.0009 | 98.5  | 0.0013  |

### 11.2 ASSIGNMENT CALIBRATION

- 11.2.1 Assignment calibration involved steps to identify any issues that prevented an acceptable level of calibration of the network, route choice and trip matrix. This will included:
  - → Checking appropriateness of centroid connectors
  - → Production of forests to understand nature of competing routes between OD pairs
  - → Checking representation of queues on surveyed journey time routes

### 11.3 ASSIGNMENT VALIDATION

Link flow validation and calibration results for the final post-matrix estimation show an improved situation compared to the scaled matrix.

### **OVERALL MODEL PERFORMANCE**

11.3.2 The calibration and validation results for all user classes in the AM peak are shown in table 11.4. The results for the car as an individual user class are shown in table 11.5.

Table 11.4 - AM Peak hour all user classes calibration and validation results

| Criteria and Measure |          | ACCEPTABILITY   | (               | Calibration      |      |                 | Validation       |      |  |
|----------------------|----------|-----------------|-----------------|------------------|------|-----------------|------------------|------|--|
|                      |          | Guideline       | Total<br>Counts | Meet<br>Criteria | %    | Total<br>Counts | Meet<br>Criteria | %    |  |
|                      |          |                 | Flow C          | riteria          |      |                 |                  |      |  |
| < 700 vph            | ±100 vph | > 85 % of links | 43              | 43               | 100% | 38              | 32               | 84%  |  |
| 700 - 2,700<br>vph   | ±15%     | > 85 % of links | 3               | 3                | 100% | 5               | 5                | 100% |  |
| > 2,700 vph          | ±400 vph | > 85 % of links | 0               | 0                | 0%   | 0               | 0                | 0%   |  |
| GEH Criteria         |          |                 |                 |                  |      |                 |                  |      |  |
| GEH Statistic f      |          | > 85 % of links | 46              | 46               | 100% | 43              | 36               | 84%  |  |

11.3.3 The AM peak results show that 100% of the calibration links and 84% of the validation links pass the criteria set out in WebTAG to achieve GEH values with a value of less than 5. The car only results show a very similar pattern.

Table 11.5 - AM Peak hour car only calibration and validation results

| Criteria and Measure                                   |          | Acceptability   |                 | Calibration      |      |                 | Validation       |     |  |
|--------------------------------------------------------|----------|-----------------|-----------------|------------------|------|-----------------|------------------|-----|--|
|                                                        |          | GUIDELINE       | Total<br>Counts | Meet<br>Criteria | %    | Total<br>Counts | Meet<br>Criteria | %   |  |
|                                                        |          |                 | Flow C          | riteria          |      |                 |                  |     |  |
| < 700 vph                                              | ±100 vph | > 85 % of links | 44              | 44               | 100% | 43              | 38               | 88% |  |
| 700 - 2,700<br>vph                                     | ±15%     | > 85 % of links | 2               | 2                | 100% | 0               | 0                | 0%  |  |
| > 2,700 vph                                            | ±400 vph | > 85 % of links | 0               | 0                | 0%   | 0               | 0                | 0%  |  |
| GEH Criteria                                           |          |                 |                 |                  |      |                 |                  |     |  |
| GEH Statistic for individual links < 5 > 85 % of links |          |                 | 46              | 46               | 100% | 43              | 36               | 84% |  |

11.3.4 The interpeak results for all user classes can be seen in Table 11.6 whilst car only is seen in Table 11.7.

Table 11.6 - Inter Peak hour all user classes calibration and validation results

|                                        |              | Acceptability   | ı               | Calibration      | I    | Validation      |                  |      |  |
|----------------------------------------|--------------|-----------------|-----------------|------------------|------|-----------------|------------------|------|--|
| CRITERIA AND MEASURE                   |              | Guideline       | Total<br>Counts | Meet<br>Criteria | %    | Total<br>Counts | Meet<br>Criteria | %    |  |
|                                        |              |                 | Flow C          | riteria          |      |                 |                  |      |  |
| < 700 vph                              | ±100 vph     | > 85 % of links | 44              | 44               | 100% | 39              | 34               | 87%  |  |
| 700 - 2,700<br>vph                     | ±15%         | > 85 % of links | 2               | 2                | 100% | 4               | 4                | 100% |  |
| > 2,700 vph                            | ±400 vph     | > 85 % of links | 0               | 0                | 0%   | 0               | 0                | 0%   |  |
|                                        | GEH Criteria |                 |                 |                  |      |                 |                  |      |  |
| GEH Statistic for individual links < 5 |              | > 85 % of links | 46              | 46               | 100% | 43              | 38               | 88%  |  |

The Interpeak results show that both the calibration and validation counts have at least 85% of links with a GEH value of less than 5. However, for cars the validation percentage is at 79% of links with a GEH below 5. This is not considered an issue as in terms of flow validation the car user class is at 88% of links within 100 pcus of the observed count.

Table 11.7 - Inter Peak hour car only calibration and validation results

|                                        |              | Acceptability   |                 | CALIBRATION      | I    | VALIDATION      |                  |     |  |
|----------------------------------------|--------------|-----------------|-----------------|------------------|------|-----------------|------------------|-----|--|
| Criteria and Measure                   |              | Guideline       | Total<br>Counts | Meet<br>Criteria | %    | Total<br>Counts | Meet<br>Criteria | %   |  |
|                                        |              |                 | Flow C          | riteria          |      |                 |                  |     |  |
| < 700 vph                              | ±100 vph     | > 85 % of links | 44              | 44               | 100% | 42              | 37               | 88% |  |
| 700 - 2,700<br>vph                     | ±15%         | > 85 % of links | 2               | 2                | 100% | 1               | 0                | 0%  |  |
| > 2,700 vph                            | ±400 vph     | > 85 % of links | 0               | 0                | 0%   | 0               | 0                | 0%  |  |
|                                        | GEH Criteria |                 |                 |                  |      |                 |                  |     |  |
| GEH Statistic for individual links < 5 |              | > 85 % of links | 46              | 46               | 100% | 43              | 34               | 79% |  |

11.3.6 The PM results below show that all of the calibration links have a GEH of less than 5. The car only also shows a good level of calibration and can be seen in Table 11.9. In terms of validation, 77% of links have a GEH below 5 which is marginally outside of WebTAG criteria.

Table 11.8 - PM Peak hour all user classes calibration and validation results

|                                        |          | ACCEPTABILITY   |                 | Calibration      |      |                 | Validation       |     |  |
|----------------------------------------|----------|-----------------|-----------------|------------------|------|-----------------|------------------|-----|--|
| Criteria and Measure                   |          | GUIDELINE       | Total<br>Counts | Meet<br>Criteria | %    | Total<br>Counts | Meet<br>Criteria | %   |  |
|                                        |          |                 | Flow C          | riteria          |      |                 |                  |     |  |
| < 700 vph                              | ±100 vph | > 85 % of links | 38              | 38               | 100% | 37              | 28               | 76% |  |
| 700 - 2,700<br>vph                     | ±15%     | > 85 % of links | 8               | 8                | 100% | 6               | 5                | 83% |  |
| > 2,700 vph                            | ±400 vph | > 85 % of links | 0               | 0                | 0%   | 0               | 0                | 0%  |  |
| GEH Criteria                           |          |                 |                 |                  |      |                 |                  |     |  |
| GEH Statistic for individual links < 5 |          | > 85 % of links | 46              | 46               | 100% | 43              | 33               | 77% |  |

Table 11.9 - PM peak hour car only calibration and validation results

|                                        |              | ACCEPTABILITY   |                 | Calibration      |      |                 | VALIDATION       |      |  |  |
|----------------------------------------|--------------|-----------------|-----------------|------------------|------|-----------------|------------------|------|--|--|
| Criteria and Measure                   |              | GUIDELINE       | Total<br>Counts | Meet<br>Criteria | %    | Total<br>Counts | Meet<br>Criteria | %    |  |  |
|                                        |              |                 | Flow C          | riteria          |      |                 |                  |      |  |  |
| < 700 vph                              | ±100 vph     | > 85 % of links | 44              | 44               | 100% | 40              | 33               | 83%  |  |  |
| 700 - 2,700<br>vph                     | ±15%         | > 85 % of links | 2               | 2                | 100% | 3               | 3                | 100% |  |  |
| > 2,700 vph                            | ±400 vph     | > 85 % of links | 0               | 0                | 0%   | 0               | 0                | 0%   |  |  |
|                                        | GEH Criteria |                 |                 |                  |      |                 |                  |      |  |  |
| GEH Statistic for individual links < 5 |              | > 85 % of links | 46              | 44               | 96%  | 43              | 36               | 84%  |  |  |

- 11.3.7 The matrix estimation process has increased the calibration counts to 100% of links having a GEH value of less than 5 for all three peaks. Despite the percentage of validation counts with a GEH below 5 not reaching 85% across all three peaks, the model is considered to be matched well to the observed data as taking the calibration and validation counts combined, the percentage of links with a GEH is at 92% for the AM peak, 94% for the interpeak and 89% for the PM peak
- 11.3.8 Table 11.10, table 11.11 and table 11.12 show the GEH breakdown for AM peak, interpeak and PM peak respectively.

Table 11.10 - AM Peak GEH summary

| GEH RANGE | Calibration |      | V۵ | VALIDATION |    | OMBINED |
|-----------|-------------|------|----|------------|----|---------|
| GEH < 2   | 40          | 87%  | 19 | 44%        | 59 | 66%     |
| GEH < 4   | 44          | 96%  | 34 | 79%        | 78 | 88%     |
| GEH < 6   | 46          | 100% | 37 | 86%        | 83 | 93%     |
| GEH < 8   | 46          | 100% | 41 | 95%        | 87 | 98%     |
| GEH < 10  | 46          | 100% | 41 | 95%        | 87 | 98%     |
| GEH <5    | 46          | 100% | 36 | 84%        | 82 | 92%     |

Table 11.11 - Inter Peak GEH summary

| GEH RANGE | Calibr | CALIBRATION VALIDATION |    | LIDATION | COMBINED |     |
|-----------|--------|------------------------|----|----------|----------|-----|
| GEH < 2   | 42     | 91%                    | 25 | 58%      | 67       | 75% |
| GEH < 4   | 46     | 100%                   | 34 | 79%      | 80       | 90% |
| GEH < 6   | 46     | 100%                   | 39 | 91%      | 85       | 96% |
| GEH < 8   | 46     | 100%                   | 40 | 93%      | 86       | 97% |
| GEH < 10  | 46     | 100%                   | 40 | 93%      | 86       | 97% |
| GEH <5    | 46     | 100%                   | 38 | 88%      | 84       | 94% |

Table 11.12 - PM Peak GEH summary

| GEH RANGE | Calibration |      | VA | VALIDATION |    | OMBINED |
|-----------|-------------|------|----|------------|----|---------|
| GEH < 2   | 36          | 78%  | 17 | 40%        | 53 | 60%     |
| GEH < 4   | 44          | 96%  | 30 | 70%        | 74 | 83%     |
| GEH < 6   | 46          | 100% | 36 | 84%        | 82 | 92%     |
| GEH < 8   | 46          | 100% | 37 | 86%        | 83 | 93%     |
| GEH < 10  | 46          | 100% | 39 | 91%        | 85 | 96%     |
| GEH <5    | 46          | 100% | 33 | 77%        | 79 | 89%     |

- 11.3.9 The GEH summaries show that all three peaks have at least 85% of the combined counts have a GEH value of less than 5. These results show that the model is well validated and calibrated.
- 11.3.10 Appendix E contains all link counts used for validation and calibration. Plots are also provided showing the GEH performance of counts near the bridge crossings.

### JOURNEY TIME PERFORMANCE

- 11.3.11 Appendix F contains journey time graphs across all three time periods.
- 11.3.12 The journey time routes which can be seen in Figure 5.7 also indicate that the model reflects the observed data.
- 11.3.13 A summary of the modelled journey times compared to the observed is given for the AM peak in table 11.13.

Table 11.13 - AM peak journey time route comparison

| ID | Name           | OBSERVED (S) | MODELLED (S) | DIFF | %    | Pass? |
|----|----------------|--------------|--------------|------|------|-------|
| 1  | 1 - Northbound | 341          | 367          | -26  | -8%  | Yes   |
| 2  | 1 - Southbound | 367          | 338          | 29   | 8%   | Yes   |
| 3  | 2 - Northbound | 521          | 583          | -62  | -12% | Yes   |
| 4  | 2 - Southbound | 599          | 538          | 61   | 10%  | Yes   |
| 5  | 3 - Eastbound  | 290          | 308          | -17  | -6%  | Yes   |
| 6  | 3 - Westbound  | 289          | 287          | 2    | 1%   | Yes   |
| 7  | 4 - Northbound | 216          | 183          | 33   | 15%  | Yes   |
| 8  | 4 - Southbound | 222          | 187          | 36   | 16%  | Yes   |
| 9  | 5 - Northbound | 637          | 648          | -11  | -2%  | Yes   |
| 10 | 5 - Southbound | 553          | 537          | 16   | 3%   | Yes   |
| 11 | 6 - Eastbound  | 689          | 608          | 81   | 12%  | Yes   |
| 12 | 6 - Westbound  | 598          | 541          | 57   | 10%  | Yes   |
| 13 | 7 - Eastbound  | 449          | 419          | 30   | 7%   | Yes   |
| 14 | 7 - Westbound  | 391          | 344          | 46   | 12%  | Yes   |
| 15 | 8 - Eastbound  | 723          | 698          | 25   | 3%   | Yes   |
| 16 | 8 - Westbound  | 712          | 725          | -13  | -2%  | Yes   |
| 17 | 9 - Northbound | 462          | 354          | 107  | 23%  | No    |
| 18 | 9 - Southbound | 390          | 332          | 57   | 15%  | Yes   |

- The results show that seventeen of the eighteen journey times pass the criteria set out in Table 3.3. Journey time route 9 in the northbound direction is marginally outside the required criteria. Along the majority of this route the modelled travel time matches well to the observed travel time, the section between the A146 Beccles Road / Cotmer Road signals and western Mutford Bridge is shown to be modelled faster compared to the observed data leading to the journey time route falling outside the 15% band.
- Table 11.14 shows that sixteen of the eighteen journey times pass the criteria in the inter peak. Both routes outside the criteria are shown in the journey time graphs to generally match well between the modelled travel time and observed travel time for the majority of the route.

Table 11.14 - Inter peak journey time route comparison

| ID | Name           | OBSERVED (S) | MODELLED (S) | DIFF | %    | Pass? |
|----|----------------|--------------|--------------|------|------|-------|
| 1  | 1 - Northbound | 345          | 341          | 3    | 1%   | Yes   |
| 2  | 1 - Southbound | 373          | 331          | 42   | 11%  | Yes   |
| 3  | 2 - Northbound | 549          | 506          | 42   | 8%   | Yes   |
| 4  | 2 - Southbound | 669          | 526          | 143  | 21%  | No    |
| 5  | 3 - Eastbound  | 305          | 340          | -35  | -11% | Yes   |
| 6  | 3 - Westbound  | 369          | 317          | 52   | 14%  | Yes   |
| 7  | 4 - Northbound | 216          | 185          | 31   | 14%  | Yes   |
| 8  | 4 - Southbound | 210          | 188          | 23   | 11%  | Yes   |
| 9  | 5 - Northbound | 846          | 821          | 25   | 3%   | Yes   |
| 10 | 5 - Southbound | 600          | 540          | 60   | 10%  | Yes   |
| 11 | 6 - Eastbound  | 705          | 718          | -13  | -2%  | Yes   |
| 12 | 6 - Westbound  | 646          | 539          | 107  | 17%  | No    |
| 13 | 7 - Eastbound  | 396          | 419          | -24  | -6%  | Yes   |
| 14 | 7 - Westbound  | 394          | 351          | 43   | 11%  | Yes   |
| 15 | 8 - Eastbound  | 721          | 707          | 15   | 2%   | Yes   |
| 16 | 8 - Westbound  | 745          | 738          | 7    | 1%   | Yes   |
| 17 | 9 - Northbound | 430          | 377          | 52   | 12%  | Yes   |
| 18 | 9 - Southbound | 346          | 329          | 17   | 5%   | Yes   |

- 11.3.16 The results of the PM peak journey times can be seen in Table 11.15. Journey time route 1 southbound is shown to be marginally outside the required criteria.
- Journey time route 3 westbound is outside the criteria, however the modelled journey time along this route is relatively consistent along this route across all three peaks, however there are notable differences in the observed journey time along this route. The section of the route between Peto Way and the western Mutford Bridge is shown to be modelled faster in the model compared to the observed data.
- Journey time route 9 shows a notable increase the observed journey time in the PM peak, whereas the modelled journey time remains relatively consistent between the three peaks. The PM peak model does capture some of the delay along this route, with this route slowest in the PM peak model. The section of the route on the A12 Bloodmoor Road between the A12 Tower Road and A12 Tom Crisp Way shows a delay in the observed data which is not fully replicated in the model.

Table 11.15 - PM peak journey time route comparison

| ID | Name           | OBSERVED (S) | MODELLED (S) | DIFF | %    | Pass? |
|----|----------------|--------------|--------------|------|------|-------|
| 1  | 1 - Northbound | 335          | 353          | -18  | -5%  | Yes   |
| 2  | 1 - Southbound | 449          | 354          | 95   | 21%  | No    |
| 3  | 2 - Northbound | 525          | 511          | 14   | 3%   | Yes   |
| 4  | 2 - Southbound | 592          | 537          | 55   | 9%   | Yes   |
| 5  | 3 - Eastbound  | 287          | 294          | -7   | -3%  | Yes   |
| 6  | 3 - Westbound  | 440          | 274          | 165  | 38%  | No    |
| 7  | 4 - Northbound | 202          | 188          | 14   | 7%   | Yes   |
| 8  | 4 - Southbound | 193          | 191          | 3    | 1%   | Yes   |
| 9  | 5 - Northbound | 910          | 772          | 138  | 15%  | Yes   |
| 10 | 5 - Southbound | 508          | 549          | -40  | -8%  | Yes   |
| 11 | 6 - Eastbound  | 710          | 674          | 36   | 5%   | Yes   |
| 12 | 6 - Westbound  | 597          | 618          | -21  | -4%  | Yes   |
| 13 | 7 - Eastbound  | 392          | 421          | -29  | -7%  | Yes   |
| 14 | 7 - Westbound  | 376          | 349          | 28   | 7%   | Yes   |
| 15 | 8 - Eastbound  | 861          | 730          | 131  | 15%  | Yes   |
| 16 | 8 - Westbound  | 825          | 824          | 1    | 0%   | Yes   |
| 17 | 9 - Northbound | 623          | 417          | 206  | 33%  | No    |
| 18 | 9 - Southbound | 312          | 351          | -39  | -13% | Yes   |

11.3.19 The journey times show that the link speeds and delays are accurately modelled on the key routes for all three time periods.

### MANUAL CLASSIFIED COUNTS

11.3.20 Table 11.16 to table 11.18 show the performance of the manual classified counts across all three peaks. Overall, the model matches well to the observed turning movements in terms of GEH for individual turns.

Table 11.16 - AM peak manual classified count performance

| ID | DESCRIPTION                                             | GEH<5 | GEH < 7.5 | GEH < 10 |
|----|---------------------------------------------------------|-------|-----------|----------|
| 1  | London Road/Arbor Lane/A12/Tower Road                   | 76%   | 80%       | 88%      |
| 2  | Tom Crisp Way/Stadbroke Road/Elm Tree Road              | 69%   | 94%       | 97%      |
| 3  | Somerleyton Road/Oulton Street/Hall Lane/Gorleston Road | 81%   | 88%       | 88%      |
| 4  | Yarmouth Road/Gorleston Road                            | 67%   | 78%       | 100%     |
| 5  | Yarmouth Road/Leisure Way/Foxburrow Hill/Bentley Drive  | 88%   | 94%       | 94%      |
| 6  | Yarmouth Road/Corton Road                               | 56%   | 78%       | 89%      |
| 7  | Millennium Way/Oulton Road/Peto Way                     | 63%   | 81%       | 88%      |
| 8  | Horn Hill/Maconochie Way/A12/Waveney Drive              | 88%   | 94%       | 100%     |
| 9  | A12/Corton Long Lane/A12/Lowestoft Link Road            | 56%   | 75%       | 88%      |
| 10 | A12 Waveney Road/Station Square                         | 100%  | 100%      | 100%     |
| 11 | Commercial Road/Station Square                          | 78%   | 100%      | 100%     |
| 12 | A12 Pier Terrace/London Road South/Belvedere Road       | 89%   | 89%       | 89%      |
| 13 | A12 Belvedere Road/Kirkley Rise                         | 36%   | 48%       | 52%      |
| 14 | Denmark Road/Katwijk Way                                | 67%   | 89%       | 89%      |
| 15 | Katwijk Way/Raglan Street                               | 56%   | 81%       | 81%      |
| 16 | A12 Waveney Road/Suffolk Road                           | 67%   | 78%       | 100%     |
| 17 | A12 Tom Crisp Way/Blackheath Road                       | 88%   | 100%      | 100%     |
| 18 | Saltwater Way/Victoria Road                             | 100%  | 100%      | 100%     |
| 19 | Normanston Drive/Gorleston Road                         | 67%   | 89%       | 100%     |
| 20 | Fir Lane/A117 Normanston Drive/Peto Way                 | 80%   | 100%      | 100%     |
| 21 | A12/Gordon Road/Whapload Road                           | 50%   | 69%       | 88%      |
| 22 | A12/St Peters Street                                    | 56%   | 72%       | 92%      |

| ID | DESCRIPTION                   | GEH < 5 | GEH < 7.5 | GEH<10 |
|----|-------------------------------|---------|-----------|--------|
| 23 | A1144/Katwijk Way             | 22%     | 44%       | 78%    |
| 24 | A146 Beccles Road/Cotmer Road | 100%    | 100%      | 100%   |

11.3.21 As detailed in section 5, interpeak turning movements were not carried out at junctions 10 to 24.

Table 11.17 - Interpeak manual classified count performance

| ID | DESCRIPTION                                             | GEH<5 | GEH < 7.5 | GEH<10 |
|----|---------------------------------------------------------|-------|-----------|--------|
| 1  | London Road/Arbor Lane/A12/Tower Road                   | 76%   | 84%       | 92%    |
| 2  | Tom Crisp Way/Stadbroke Road/Elm Tree Road              | 61%   | 97%       | 97%    |
| 3  | Somerleyton Road/Oulton Street/Hall Lane/Gorleston Road | 88%   | 94%       | 100%   |
| 4  | Yarmouth Road/Gorleston Road                            | 89%   | 100%      | 100%   |
| 5  | Yarmouth Road/Leisure Way/Foxburrow Hill/Bentley Drive  | 81%   | 100%      | 100%   |
| 6  | Yarmouth Road/Corton Road                               | 67%   | 89%       | 100%   |
| 7  | Millennium Way/Oulton Road/Peto Way                     | 63%   | 81%       | 100%   |
| 8  | Horn Hill/Maconochie Way/A12/Waveney Drive              | 81%   | 94%       | 100%   |
| 9  | A12/Corton Long Lane/A12/Lowestoft Link Road            | 63%   | 69%       | 100%   |

Table 11.18 - PM peak manual classified count performance

| ID | Description                                             | GEH<5 | GEH < 7.5 | GEH < 10 |
|----|---------------------------------------------------------|-------|-----------|----------|
| 1  | London Road/Arbor Lane/A12/Tower Road                   | 76%   | 88%       | 92%      |
| 2  | Tom Crisp Way/Stadbroke Road/Elm Tree Road              | 64%   | 78%       | 97%      |
| 3  | Somerleyton Road/Oulton Street/Hall Lane/Gorleston Road | 69%   | 75%       | 88%      |
| 4  | Yarmouth Road/Gorleston Road                            | 78%   | 78%       | 89%      |
| 5  | Yarmouth Road/Leisure Way/Foxburrow Hill/Bentley Drive  | 75%   | 94%       | 100%     |
| 6  | Yarmouth Road/Corton Road                               | 56%   | 78%       | 89%      |
| 7  | Millennium Way/Oulton Road/Peto Way                     | 31%   | 56%       | 88%      |
| 8  | Horn Hill/Maconochie Way/A12/Waveney Drive              | 81%   | 81%       | 94%      |
| 9  | A12/Corton Long Lane/A12/Lowestoft Link Road            | 63%   | 69%       | 81%      |
| 10 | A12 Waveney Road/Station Square                         | 67%   | 89%       | 100%     |
| 11 | Commercial Road/Station Square                          | 67%   | 89%       | 100%     |
| 12 | A12 Pier Terrace/London Road South/Belvedere Road       | 78%   | 89%       | 89%      |
| 13 | A12 Belvedere Road/Kirkley Rise                         | 40%   | 48%       | 56%      |
| 14 | Denmark Road/Katwijk Way                                | 78%   | 78%       | 89%      |
| 15 | Katwijk Way/Raglan Street                               | 69%   | 81%       | 100%     |
| 16 | A12 Waveney Road/Suffolk Road                           | 78%   | 78%       | 100%     |
| 17 | A12 Tom Crisp Way/Blackheath Road                       | 69%   | 94%       | 100%     |
| 18 | Saltwater Way/Victoria Road                             | 33%   | 78%       | 89%      |
| 19 | Normanston Drive/Gorleston Road                         | 56%   | 78%       | 89%      |
| 20 | Fir Lane/A117 Normanston Drive/Peto Way                 | 60%   | 80%       | 92%      |
| 21 | A12/Gordon Road/Whapload Road                           | 50%   | 69%       | 88%      |
| 22 | A12/St Peters Street                                    | 64%   | 88%       | 88%      |
| 23 | A1144/Katwijk Way                                       | 56%   | 67%       | 89%      |
| 24 | A146 Beccles Road/Cotmer Road                           | 78%   | 78%       | 89%      |

### 11.4 MODELLED FLOW AND JUNCTION DELAY

11.4.1 Appendix G contains plots of the link flow and junction performance in the vicinity of the river crossings

# 12 SUMMARY OF MODEL DEVELOPMENT, STANDARDS ACHIEVED AND FITNESS FOR PURPOSE

### 12.1 SUMMARY OF MODEL DEVELOPMENT

- 12.1.1 The previous 2001 Lowestoft Traffic Model was rebuilt with a comprehensive check of the model network and a revised zone system of sufficient detail based on 2011 census geography.
- An observed prior matrix was derived from ANPR data which formed a cordon around the main study area and major internal locations. A gravity model was then used to form a synthetic matrix based on NTEM version 6.2 trip ends and 2011 census data. The synthetic matrix was used to infill the prior matrix for traffic movements not represented in the ANPR matrix.
- 12.1.3 Adjustments were made to the prior matrix using scaling of calibration counts to match the modelled flow to the observed flow. Matrix estimation was then carried out to produce a final assignment.

### 12.2 SUMMARY OF STANDARDS ACHIEVED

- The base year model validation has been developed closely following TAG M3.1 'Highway Assignment Modelling' guidance (January 2014).
- The model is shown to satisfactorily converge across all three peaks which is important as the model will be taken forward for testing of a major scheme business case. In these instances it is required that models are converged so that the benefits of the scheme are the result of the infrastructure improvements and not changes to model convergence.
- 12.2.3 Screenlines within the model which capture the key strategic movements within the model have been shown to closely match the observed flows to the modelled flows. Across all three peaks, all calibration screenlines are shown to achieve a GEH below 4, with the majority of validation screenlines also achieving this standard.
- Link validation is show to be consistently high in terms of both flow and GEH across all three peaks. Combining the observed counts within calibration and validation, 92% of counts in the AM peak, 94% of counts in the interpeak and 89% of counts in the PM peak achieve a GEH of 5 or lower above the minimum threshold of 85%.
- Journey time performance reaches the required standard of 85% of modelled journey time routes being within 15% of the observed journey time data in the AM peak and interpeak. In the AM peak, 94% of journey time routes achieve this standard, whilst 89% achieve this in the inter-peak. In the PM peak, journey time performance is marginally below the required standard at 83%, however this is not deemed a significant concern.
- 12.2.6 Manual classified turning counts were carried out a major junctions across the network, with the model shown to align well with the observed movements at these junctions.

### 12.3 ASSESSMENT OF FITNESS FOR PURPOSE

- The latest 2015 Lowestoft Transport Model is deemed fit for purpose in terms of its ability to replicate existing strategic traffic movements within the Area of Detailed Modelling (ADM). The base year model forms a suitable basis from which forecast year models can be built to create reference case, do minimum and do something scheme testing.
- 12.3.2 The model provides a suitable evidence base to underpin a major scheme business case and determine the benefits of a third crossing in Lowestoft.

### Appendix A

MCC TOTALS USED TO FACTOR ANPR DATA

Table A-1 – AM peak MCC totals used for doubly constrained furness of ANPR matrix

|     | Citt Decopination                               | Dip                 | C        | AR        | LG       | SV       | НС      | eV.           |
|-----|-------------------------------------------------|---------------------|----------|-----------|----------|----------|---------|---------------|
|     | SITE DESCRIPTION                                | Dir                 | ORIGIN   | DEST      | ORIGIN   | DEST     | ORIGIN  | DEST          |
| 1   | A12 London Road                                 | Inbound<br>Outbound | 608<br>0 | 0<br>430  | 117<br>0 | 0<br>150 | 30<br>0 | 0<br>44       |
| 2   | A146 Beccles Road                               | Inbound<br>Outbound | 587<br>0 | 0<br>625  | 85<br>0  | 0<br>125 | 45<br>0 | 0<br>56       |
| 3   | A12 Yarmouth Road                               | Inbound<br>Outbound | 746<br>0 | 0<br>1178 | 142<br>0 | 0 135    | 44<br>0 | 0 40          |
| 4   | Coast Road                                      | Inbound<br>Outbound | 61       | 0 54      | 7<br>0   | 0        | 2       | 0 3           |
|     | A12 Pier Terrace<br>(Eastern Bascule<br>bridge) | NB                  | 326      | 998       | 44       | 120      | 18      | 25            |
| 5   |                                                 | SB                  | 369      | 322       | 113      | 56       | 28      | 10            |
|     | A146 Bridge Road                                | NB                  | 545      | 235       | 90       | 49       | 17      | 8             |
| 6   | (Western Mutford bridge)                        | SB                  | 442      | 274       | 105      | 47       | 18      | 18            |
| 7   | D4075 Couloston Dood                            | NB                  | 334      | 234       | 45       | 31       | 3       | 6             |
| /   | B1375 Gorleston Road                            | SB                  | 276      | 81        | 65       | 7        | 10      | 1             |
| 8   | A1117 Millennium Way                            | NB                  | 218      | 110       | 27       | 13       | 8       | 8             |
| 0   |                                                 | SB                  | 234      | 189       | 29       | 16       | 13      | 2             |
| 9   | A12 Yarmouth Road                               | NB                  | 302      | 204       | 43       | 24       | 23      | 7             |
| Ŭ   | 7112 Tallilodii Rodd                            | SB                  | 347      | 234       | 77       | 15       | 21      | 0             |
| 10  | A12 Tom Crisp Way                               | NB                  | 525      | 192       | 64       | 23       | 12      | 6             |
| .0  | The roll of the                                 | SB                  | 199      | 100       | 59       | 19       | 17      | 11            |
| 11  | B1532 London Road                               | NB                  | 233      | 205       | 29       | 27       | 9       | 6             |
|     | South                                           | SB                  | 199      | 110       | 47       | 18       | 10      | 4             |
| 12  | B1074 Blundeston<br>Road                        | Inbound<br>Outbound | 164<br>0 | 0<br>99   | 40<br>0  | 0<br>15  | 4<br>0  | 0             |
| 13  | Flixton Road                                    | Inbound<br>Outbound | 78<br>0  | 0<br>49   | 11<br>0  | 0<br>9   | 2<br>0  | <u>0</u><br>3 |
| 4.4 | DAFOA Wasser Di                                 | EB                  | 258      | 85        | 28       | 7        | 9       | 0             |
| 14  | B1531 Waveney Drive                             | WB                  | 40       | 96        | 9        | 11       | 3       | 2             |
| 15  | North Quay Retail Park                          | Entry               | 36       | 107       | 6        | 9        | 0       | 0             |
| 10  | North Quay Retail Palk                          | Exit                | 0        | 71        | 0        | 0        | 0       | 0             |
| 16  | Links Road Car Park                             | Entry               | 3        | 0         | 0        | 0        | 0       | 0             |
| 10  | LIIINS NOAU OAI FAIR                            | Exit                | 1        | 3         | 0        | 0        | 0       | 0             |

|          | CITE DECORPTION                               | Dup   | C/     | AR   | LG     | ev.  | НС     | €V   |
|----------|-----------------------------------------------|-------|--------|------|--------|------|--------|------|
|          | SITE DESCRIPTION                              | Dir   | ORIGIN | DEST | ORIGIN | DEST | ORIGIN | DEST |
| 17       | Swimming Pool Road                            | Entry | 0      | 1    | 0      | 0    | 0      | 0    |
| 17       | Car Park                                      | Exit  | 0      | 0    | 0      | 0    | 0      | 0    |
| 18       | Shopping Centre Car<br>Park (Battery Green Rd | Entry | 0      | 0    | 0      | 0    | 0      | 0    |
| 10       | exit)                                         | Exit  | 0      | 0    | 1      | 0    | 0      | 0    |
| 19       | Shopping Centre Car<br>Park (Gordon Road      | Entry | 0      | 32   | 0      | 0    | 0      | 0    |
| 19       | entry)                                        | Exit  | 0      | 0    | 0      | 0    | 0      | 0    |
| 20       | Surrey St Car Park                            | Entry | 8      | 14   | 0      | 0    | 0      | 0    |
| 20       | entry                                         | Exit  | 0      | 0    | 0      | 0    | 0      | 0    |
| 21       | Surrey St Car Park exit                       | Entry | 0      | 0    | 0      | 0    | 0      | 0    |
| ۷۱       | (onto Clapham Road)                           | Exit  | 0      | 3    | 0      | 0    | 0      | 0    |
| 22       | Clapham Road Car                              | Entry | 3      | 24   | 0      | 0    | 0      | 0    |
| 22       | Park                                          | Exit  | 3      | 6    | 0      | 0    | 0      | 0    |
| 23       | St Johns Rd Car Park                          | Entry | 0      | 0    | 0      | 0    | 0      | 0    |
| 23       | St Johns Nu Cai Faik                          | Exit  | 0      | 2    | 0      | 0    | 0      | 0    |
| 24       | Kirkley Rise Car Park                         | Entry | 4      | 21   | 0      | 0    | 0      | 0    |
| 24       | (Northern access)                             | Exit  | 0      | 9    | 0      | 0    | 0      | 0    |
| 25       | Kirkley Rise Car Park                         | Entry | 2      | 3    | 0      | 0    | 0      | 0    |
| 25       | (Southern access)                             | Exit  | 0      | 0    | 0      | 0    | 0      | 0    |
| 26       | Kirkley Cliff Road Car                        | Entry | 0      | 0    | 0      | 0    | 0      | 0    |
| 20       | Park                                          | Exit  | 0      | 0    | 0      | 0    | 0      | 0    |
| 27       | Claremont Road Car                            | Entry | 0      | 0    | 0      | 0    | 0      | 0    |
| <u> </u> | Park                                          | Exit  | 0      | 0    | 0      | 0    | 0      | 0    |
| 28       | Marine Parade Car                             | Entry | 0      | 5    | 0      | 0    | 0      | 0    |
| 20       | Park                                          | Exit  | 0      | 0    | 0      | 0    | 0      | 0    |
| 29       | Asda Car Park                                 | Entry | 155    | 60   | 12     | 2    | 0      | 0    |
| 20       | , load Oal I ailk                             | Exit  | 23     | 132  | 13     | 0    | 0      | 0    |

Table A-2 – Inter peak MCC totals used for doubly constrained furness of ANPR matrix

|    | 0: 0                                 | Din                 | CA       | AR       | LO       | SV       | НС      | <b>SV</b> |
|----|--------------------------------------|---------------------|----------|----------|----------|----------|---------|-----------|
|    | SITE DESCRIPTION                     | Dir                 | ORIGIN   | DEST     | ORIGIN   | DEST     | ORIGIN  | DEST      |
| 1  | A12 London Road                      | Inbound             | 511      | 0        | 90       | 0        | 33      | 0         |
|    | A440 D                               | Outbound<br>Inbound | 0<br>457 | 526<br>0 | 0<br>93  | 85<br>0  | 0<br>38 | 38<br>0   |
| 2  | A146 Beccles Road                    | Outbound            | 0        | 467      | 0        | 86       | 0       | 39        |
| 3  | A12 Yarmouth Road                    | Inbound<br>Outbound | 704<br>0 | 0<br>711 | 119<br>0 | 0<br>118 | 37<br>0 | 0<br>35   |
| 4  | Coast Road                           | Inbound             | 52       | 0        | 5        | 0        | 2       | 0         |
|    | Oddi Rodd                            | Outbound            | 0        | 58       | 0        | 7        | 0       | 3         |
| 5  | •                                    | NB                  | 323      | 547      | 40       | 87       | 12      | 32        |
|    | bridge)                              | SB                  | 624      | 252      | 86       | 39       | 37      | 14        |
| 6  | A146 Bridge Road<br>(Western Mutford | NB                  | 428      | 390      | 60       | 70       | 22      | 13        |
|    | bridge)                              | SB                  | 391      | 389      | 61       | 59       | 13      | 18        |
| 7  | B1375 Gorleston Road                 | NB                  | 163      | 207      | 29       | 33       | 1       | 15        |
| ,  | D 1070 Contolon Road                 | SB                  | 292      | 106      | 52       | 10       | 13      | 1         |
| 8  | 8 A1117 Millennium Way               | NB                  | 220      | 161      | 30       | 15       | 6       | 8         |
| J  |                                      | SB                  | 217      | 120      | 35       | 11       | 11      | 3         |
| 9  | A12 Yarmouth Road                    | NB                  | 292      | 183      | 45       | 26       | 15      | 8         |
| J  | 7112 Tallilodii Rodd                 | SB                  | 344      | 116      | 52       | 16       | 25      | 3         |
| 10 | A12 Tom Crisp Way                    | NB                  | 297      | 137      | 41       | 31       | 13      | 5         |
|    | THE FORM SHOP Way                    | SB                  | 179      | 254      | 31       | 33       | 11      | 15        |
| 11 | B1532 London Road                    | NB                  | 143      | 138      | 25       | 26       | 13      | 5         |
|    | South                                | SB                  | 180      | 149      | 31       | 15       | 10      | 8         |
| 12 | B1074 Blundeston<br>Road             | Inbound             | 90<br>0  | 0<br>80  | 20<br>0  | 0<br>18  | 3<br>0  | 0<br>3    |
| 40 |                                      | Outbound<br>Inbound | 57       | 0        | 9        | 0        | 1       | 0         |
| 13 | Flixton Road                         | Outbound            | 0        | 41       | 0        | 7        | 0       | 1         |
| 14 | B1531 Waveney Drive                  | EB                  | 169      | 44       | 22       | 5        | 4       | 4         |
|    | , 2                                  | WB                  | 53       | 163      | 8        | 21       | 4       | 5         |
| 15 | North Quay Retail Park               | Entry               | 147      | 230      | 9        | 19       | 1       | 0         |
|    | Quay redain runk                     | Exit                | 0        | 373      | 0        | 0        | 0       | 0         |
| 16 | Links Road Car Park                  | Entry               | 7        | 3        | 0        | 0        | 0       | 0         |
| 10 | Ening Road Oal Laik                  | Exit                | 4        | 5        | 0        | 1        | 0       | 0         |

|            | 0 D                                           | D     | C,     | AR   | LO     | ev.  | НС     | eV   |
|------------|-----------------------------------------------|-------|--------|------|--------|------|--------|------|
|            | SITE DESCRIPTION                              | Dir   | ORIGIN | DEST | ORIGIN | DEST | ORIGIN | DEST |
| 17         | Swimming Pool Road                            | Entry | 0      | 7    | 0      | 0    | 0      | 0    |
| 17         | Car Park                                      | Exit  | 5      | 0    | 0      | 0    | 0      | 0    |
| 18         | Shopping Centre Car<br>Park (Battery Green Rd | Entry | 0      | 0    | 0      | 0    | 0      | 0    |
| 10         | exit)                                         | Exit  | 48     | 0    | 1      | 0    | 0      | 0    |
| 19         | Shopping Centre Car<br>Park (Gordon Road      | Entry | 6      | 39   | 0      | 1    | 0      | 0    |
| 19         | entry)                                        | Exit  | 0      | 0    | 0      | 0    | 0      | 0    |
| 20         | Surrey St Car Park                            | Entry | 34     | 26   | 1      | 0    | 0      | 0    |
| 20         | entry                                         | Exit  | 0      | 0    | 0      | 0    | 0      | 0    |
| 21         | Surrey St Car Park exit                       | Entry | 0      | 0    | 0      | 0    | 0      | 0    |
| <b>4</b> 1 | (onto Clapham Road)                           | Exit  | 33     | 33   | 1      | 1    | 0      | 0    |
| 22         | Clapham Road Car                              | Entry | 25     | 78   | 0      | 0    | 0      | 0    |
|            | Park                                          | Exit  | 82     | 24   | 0      | 3    | 0      | 0    |
| 23         | St Johns Rd Car Park                          | Entry | 0      | 4    | 2      | 0    | 0      | 0    |
|            | Occomine the Gail Failt                       | Exit  | 2      | 1    | 0      | 1    | 0      | 0    |
| 24         | Kirkley Rise Car Park                         | Entry | 6      | 4    | 0      | 0    | 0      | 0    |
| - 1        | (Northern access)                             | Exit  | 11     | 0    | 0      | 0    | 0      | 0    |
| 25         | Kirkley Rise Car Park                         | Entry | 2      | 1    | 0      | 0    | 0      | 0    |
|            | (Southern access)                             | Exit  | 0      | 0    | 0      | 0    | 0      | 0    |
| 26         | Kirkley Cliff Road Car                        | Entry | 0      | 0    | 0      | 0    | 0      | 0    |
|            | Park                                          | Exit  | 0      | 0    | 0      | 0    | 0      | 0    |
| 27         | Claremont Road Car                            | Entry | 1      | 11   | 0      | 0    | 0      | 0    |
|            | Park                                          | Exit  | 6      | 5    | 2      | 0    | 0      | 0    |
| 28         | Marine Parade Car                             | Entry | 4      | 34   | 0      | 3    | 0      | 0    |
|            | Park                                          | Exit  | 29     | 7    | 0      | 0    | 0      | 1    |
| 29         | Asda Car Park                                 | Entry | 265    | 72   | 15     | 1    | 1      | 1    |
|            | 3.5.5                                         | Exit  | 81     | 259  | 3      | 13   | 1      | 0    |

Table A-3 – PM peak MCC totals used for doubly constrained furness of ANPR matrix

|   |    | Curr Draonunguou                     | Din                 | C         | AR       | LO       | SV       | НС      | <b>SV</b> |
|---|----|--------------------------------------|---------------------|-----------|----------|----------|----------|---------|-----------|
|   |    | SITE DESCRIPTION                     | Dir                 | ORIGIN    | DEST     | ORIGIN   | DEST     | ORIGIN  | DEST      |
|   | 1  | A12 London Road                      | Inbound             | 611       | 0        | 104      | 0        | 14      | 0         |
| _ |    |                                      | Outbound<br>Inbound | 0<br>871  | 668<br>0 | 0<br>136 | 103<br>0 | 0<br>19 | 15<br>0   |
|   | 2  | A146 Beccles Road                    | Outbound            | 0         | 673      | 0        | 53       | 0       | 17        |
|   | 3  | A12 Yarmouth Road                    | Inbound             | 1388<br>0 | 0<br>909 | 173      | 0<br>91  | 18      | 0<br>19   |
| H | _  |                                      | Outbound Inbound    | 84        | 909      | 0<br>7   | 0        | 0<br>3  | 0         |
|   | 4  | Coast Road                           | Outbound            |           | 52       | 0        | 5        | 0       | 3         |
|   | 5  | A12 Pier Terrace<br>(Eastern Bascule | NB                  | 358       | 608      | 32       | 78       | 5       | 23        |
|   | Ü  | bridge)                              | SB                  | 1086      | 333      | 107      | 40       | 15      | 10        |
|   | 6  | A146 Bridge Road<br>(Western Mutford | NB                  | 419       | 538      | 52       | 88       | 6       | 11        |
|   |    | bridge)                              | SB                  | 331       | 672      | 40       | 79       | 4       | 7         |
|   | 7  | B1375 Gorleston Road                 | NB                  | 115       | 277      | 17       | 49       | 1       | 3         |
| _ |    |                                      | SB                  | 455       | 188      | 65       | 35       | 6       | 1         |
|   | 8  | A1117 Millennium Way                 | NB                  | 247       | 221      | 12       | 25       | 2       | 5         |
|   | -  |                                      | SB                  | 227       | 247      | 34       | 30       | 4       | 1         |
|   | 9  | A12 Yarmouth Road                    | NB                  | 429       | 265      | 44       | 26       | 7       | 8         |
|   |    |                                      | SB                  | 397       | 167      | 46       | 11       | 17      | 3         |
|   | 10 | A12 Tom Crisp Way                    | NB                  | 232       | 217      | 31       | 40       | 5       | 4         |
|   |    |                                      | SB                  | 297       | 471      | 19       | 44       | 3       | 6         |
|   | 11 | B1532 London Road                    | NB                  | 187       | 239      | 14       | 25       | 7       | 4         |
|   |    | South                                | SB                  | 222       | 229      | 19       | 23       | 8       | 3         |
|   | 12 | B1074 Blundeston<br>Road             | Inbound Outbound    | 167<br>0  | 0<br>111 | 32<br>0  | 0<br>15  | 1<br>0  | 0         |
| - | 40 |                                      | Inbound             | 59        | 0        | 13       | 0        | 1       | 0         |
|   | 13 | Flixton Road                         | Outbound            |           | 61       | 0        | 6        | 0       | 0         |
|   | 14 | B1531 Waveney Drive                  | EB                  | 164       | 50       | 16       | 6        | 4       | 2         |
|   |    | 2.33                                 | WB                  | 117       | 290      | 6        | 33       | 1       | 5         |
|   | 15 | North Quay Retail Park               | Entry               | 99        | 175      | 7        | 17       | 0       | 0         |
|   | .0 | Quay rolaii i air                    | Exit                | 0         | 309      | 0        | 0        | 0       | 0         |
|   | 16 | Links Road Car Park                  | Entry               | 5         | 4        | 0        | 0        | 0       | 0         |
|   | 10 | Linko Rodu Odi i dik                 | Exit                | 0         | 8        | 0        | 0        | 0       | 0         |

|            | 0 0                                           | D     | C/     | AR   | LO     | eV   | НС     | ev V |
|------------|-----------------------------------------------|-------|--------|------|--------|------|--------|------|
|            | SITE DESCRIPTION                              | Dir   | ORIGIN | DEST | ORIGIN | DEST | ORIGIN | DEST |
| 17         | Swimming Pool Road                            | Entry | 0      | 5    | 0      | 0    | 0      | 0    |
| 17         | Car Park                                      | Exit  | 15     | 0    | 0      | 0    | 0      | 0    |
| 18         | Shopping Centre Car<br>Park (Battery Green Rd | Entry | 0      | 0    | 0      | 0    | 0      | 0    |
| 10         | exit)                                         | Exit  | 25     | 0    | 1      | 0    | 0      | 0    |
| 19         | Shopping Centre Car<br>Park (Gordon Road      | Entry | 0      | 1    | 0      | 0    | 0      | 0    |
| 19         | entry)                                        | Exit  | 0      | 0    | 0      | 0    | 0      | 0    |
| 20         | Surrey St Car Park                            | Entry | 3      | 0    | 0      | 0    | 0      | 0    |
| 20         | entry                                         | Exit  | 0      | 0    | 0      | 0    | 0      | 0    |
| 21         | Surrey St Car Park exit                       | Entry | 0      | 0    | 0      | 0    | 0      | 0    |
| ۷۱         | (onto Clapham Road)                           | Exit  | 11     | 4    | 0      | 0    | 0      | 0    |
| 22         | Clapham Road Car                              | Entry | 7      | 15   | 0      | 0    | 0      | 0    |
| 22         | Park                                          | Exit  | 35     | 12   | 0      | 3    | 0      | 0    |
| 23         | St Johns Rd Car Park                          | Entry | 8      | 0    | 0      | 0    | 0      | 0    |
| 23         | St Johns Ru Cai Paik                          | Exit  | 3      | 1    | 0      | 0    | 0      | 0    |
| 24         | Kirkley Rise Car Park                         | Entry | 0      | 2    | 0      | 0    | 0      | 0    |
| <b>24</b>  | (Northern access)                             | Exit  | 10     | 0    | 0      | 0    | 0      | 0    |
| 25         | Kirkley Rise Car Park                         | Entry | 0      | 0    | 0      | 0    | 0      | 0    |
| 25         | (Southern access)                             | Exit  | 1      | 1    | 0      | 0    | 0      | 0    |
| 26         | Kirkley Cliff Road Car                        | Entry | 0      | 0    | 0      | 0    | 0      | 0    |
| 20         | Park                                          | Exit  | 1      | 0    | 0      | 0    | 0      | 0    |
| 27         | Claremont Road Car                            | Entry | 5      | 10   | 0      | 2    | 0      | 0    |
|            | Park                                          | Exit  | 9      | 1    | 0      | 0    | 0      | 0    |
| 28         | Marine Parade Car                             | Entry | 1      | 16   | 0      | 0    | 0      | 0    |
| <b>2</b> 6 | Park                                          | Exit  | 22     | 1    | 4      | 0    | 0      | 0    |
| 20         | Ando Cor Port                                 | Entry | 184    | 104  | 11     | 8    | 0      | 0    |
| 29         | Asda Car Park                                 | Exit  | 61     | 254  | 6      | 15   | 0      | 0    |

## Appendix B

**GRAVITY MODEL TLD AND MATRIX CHANGES** 

### AM peak gravity model

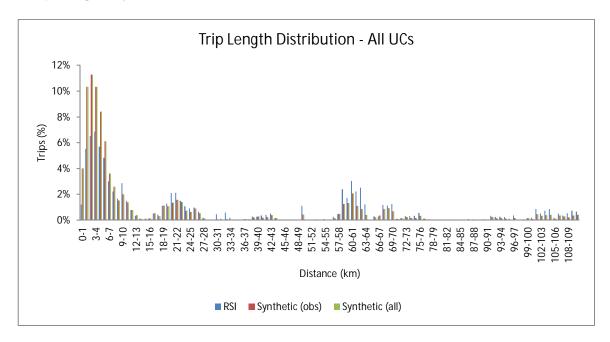



Figure B.1 – AM peak - Overall trip length distribution (UC1 to UC3)



Figure B.2 – AM peak – UC1 trip length distribution

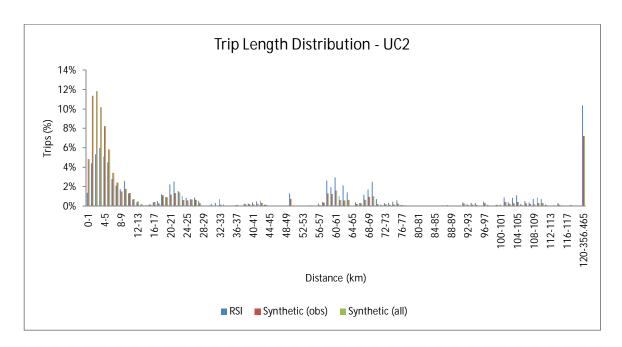



Figure B.3 – AM peak – UC2 trip length distribution

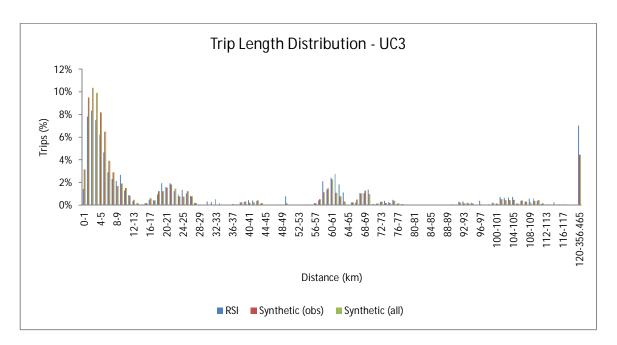



Figure B.4 – AM peak – UC3 trip length distribution

NB - Intra-zonals are removed

**RSI Matrix - Total Trips** 

|       | 1  | 2   | 3   | 4    | 5   | Total |
|-------|----|-----|-----|------|-----|-------|
| 1     | 0  | 0   | 0   | 31   | 16  | 47    |
| 2     | 0  | 0   | 0   | 326  | 145 | 471   |
| 3     | 0  | 0   | 0   | 301  | 153 | 454   |
| 4     | 42 | 188 | 260 | 361  | 239 | 1090  |
| 5     | 35 | 172 | 236 | 622  | 400 | 1465  |
| Total | 77 | 360 | 496 | 1641 | 953 | 3527  |

Synthetic (Observed) Matrix - Total Trips

|       | 1   | 2   | 3   | 4    | 5    | Total |
|-------|-----|-----|-----|------|------|-------|
| 1     | 2   | 13  | 16  | 17   | 10   | 58    |
| 2     | 28  | 69  | 101 | 243  | 154  | 595   |
| 3     | 27  | 77  | 43  | 273  | 148  | 568   |
| 4     | 32  | 202 | 317 | 1483 | 530  | 2564  |
| 5     | 36  | 226 | 307 | 957  | 1040 | 2566  |
| Total | 125 | 587 | 784 | 2973 | 1882 | 6351  |

Synthetic (Full) Matrix - Total Trips

|       | 1   | 2   | 3   | 4    | 5    | Total |
|-------|-----|-----|-----|------|------|-------|
| 1     | 2   | 13  | 16  | 17   | 10   | 58    |
| 2     | 28  | 69  | 101 | 244  | 154  | 596   |
| 3     | 27  | 77  | 43  | 273  | 148  | 568   |
| 4     | 32  | 202 | 317 | 1484 | 530  | 2565  |
| 5     | 36  | 226 | 307 | 958  | 1040 | 2567  |
| Total | 125 | 587 | 784 | 2976 | 1882 | 6354  |

### **RSI Matrix - % of Total**

|       | 1  | 2   | 3   | 4   | 5   | Total |
|-------|----|-----|-----|-----|-----|-------|
| 1     | 0% | 0%  | 0%  | 1%  | 0%  | 1%    |
| 2     | 0% | 0%  | 0%  | 9%  | 4%  | 13%   |
| 3     | 0% | 0%  | 0%  | 9%  | 4%  | 13%   |
| 4     | 1% | 5%  | 7%  | 10% | 7%  | 31%   |
| 5     | 1% | 5%  | 7%  | 18% | 11% | 42%   |
| Total | 2% | 10% | 14% | 47% | 27% | 100%  |

### Synthetic (Observed) Matrix - % of Total

|       | 1  | 2  | 3   | 4   | 5   | Total |
|-------|----|----|-----|-----|-----|-------|
| 1     | 0% | 0% | 0%  | 0%  | 0%  | 1%    |
| 2     | 0% | 1% | 2%  | 4%  | 2%  | 9%    |
| 3     | 0% | 1% | 1%  | 4%  | 2%  | 9%    |
| 4     | 1% | 3% | 5%  | 23% | 8%  | 40%   |
| 5     | 1% | 4% | 5%  | 15% | 16% | 40%   |
| Total | 2% | 9% | 12% | 47% | 30% | 100%  |

|       | 1  | 2  | 3   | 4   | 5   | Total |
|-------|----|----|-----|-----|-----|-------|
| 1     | 0% | 0% | 0%  | 0%  | 0%  | 1%    |
| 2     | 0% | 1% | 2%  | 4%  | 2%  | 9%    |
| 3     | 0% | 1% | 1%  | 4%  | 2%  | 9%    |
| 4     | 1% | 3% | 5%  | 23% | 8%  | 40%   |
| 5     | 1% | 4% | 5%  | 15% | 16% | 40%   |
| Total | 2% | 9% | 12% | 47% | 30% | 100%  |

NB - Intra-zonals are removed

**RSI Matrix - Total Trips** 

|       | 1  | 2  | 3  | 4   | 5   | Total |
|-------|----|----|----|-----|-----|-------|
| 1     | 0  | 0  | 0  | 4   | 2   | 6     |
| 2     | 0  | 0  | 0  | 40  | 18  | 58    |
| 3     | 0  | 0  | 0  | 36  | 19  | 55    |
| 4     | 6  | 27 | 36 | 44  | 35  | 148   |
| 5     | 4  | 19 | 26 | 64  | 41  | 154   |
| Total | 10 | 46 | 62 | 188 | 115 | 421   |

Synthetic (Observed) Matrix - Total Trips

|       | 1  | 2  | 3  | 4   | 5   | Total |
|-------|----|----|----|-----|-----|-------|
| 1     | 0  | 2  | 2  | 2   | 1   | 7     |
| 2     | 4  | 11 | 16 | 26  | 17  | 74    |
| 3     | 4  | 12 | 7  | 29  | 17  | 69    |
| 4     | 3  | 22 | 36 | 184 | 66  | 311   |
| 5     | 3  | 23 | 32 | 102 | 116 | 276   |
| Total | 14 | 70 | 93 | 343 | 217 | 737   |

Synthetic (Full) Matrix - Total Trips

|       | 1  | 2  | 3  | 4   | 5   | Total |
|-------|----|----|----|-----|-----|-------|
| 1     | 0  | 2  | 2  | 2   | 1   | 7     |
| 2     | 4  | 11 | 16 | 26  | 17  | 74    |
| 3     | 4  | 12 | 7  | 29  | 17  | 69    |
| 4     | 3  | 22 | 36 | 185 | 66  | 312   |
| 5     | 3  | 23 | 32 | 102 | 116 | 276   |
| Total | 14 | 70 | 93 | 344 | 217 | 738   |

### **RSI Matrix - % of Total**

|       | 1  | 2   | 3   | 4   | 5   | Total |
|-------|----|-----|-----|-----|-----|-------|
| 1     | 0% | 0%  | 0%  | 1%  | 0%  | 1%    |
| 2     | 0% | 0%  | 0%  | 10% | 4%  | 14%   |
| 3     | 0% | 0%  | 0%  | 9%  | 5%  | 13%   |
| 4     | 1% | 6%  | 9%  | 10% | 8%  | 35%   |
| 5     | 1% | 5%  | 6%  | 15% | 10% | 37%   |
| Total | 2% | 11% | 15% | 45% | 27% | 100%  |

### Synthetic (Observed) Matrix - % of Total

|       | 1  | 2  | 3   | 4   | 5   | Total |
|-------|----|----|-----|-----|-----|-------|
| 1     | 0% | 0% | 0%  | 0%  | 0%  | 1%    |
| 2     | 1% | 1% | 2%  | 4%  | 2%  | 10%   |
| 3     | 1% | 2% | 1%  | 4%  | 2%  | 9%    |
| 4     | 0% | 3% | 5%  | 25% | 9%  | 42%   |
| 5     | 0% | 3% | 4%  | 14% | 16% | 37%   |
| Total | 2% | 9% | 13% | 47% | 29% | 100%  |

|       | 1  | 2  | 3   | 4   | 5   | Total |
|-------|----|----|-----|-----|-----|-------|
| 1     | 0% | 0% | 0%  | 0%  | 0%  | 1%    |
| 2     | 1% | 1% | 2%  | 4%  | 2%  | 10%   |
| 3     | 1% | 2% | 1%  | 4%  | 2%  | 9%    |
| 4     | 0% | 3% | 5%  | 25% | 9%  | 42%   |
| 5     | 0% | 3% | 4%  | 14% | 16% | 37%   |
| Total | 2% | 9% | 13% | 47% | 29% | 100%  |

NB - Intra-zonals are removed

**RSI Matrix - Total Trips** 

|       | 1  | 2   | 3   | 4   | 5   | Total |
|-------|----|-----|-----|-----|-----|-------|
| 1     | 0  | 0   | 0   | 12  | 12  | 24    |
| 2     | 0  | 0   | 0   | 134 | 130 | 264   |
| 3     | 0  | 0   | 0   | 132 | 147 | 279   |
| 4     | 17 | 87  | 121 | 177 | 297 | 699   |
| 5     | 14 | 75  | 114 | 313 | 352 | 868   |
| Total | 31 | 162 | 235 | 768 | 938 | 2134  |

Synthetic (Observed) Matrix - Total Trips

|       | 1  | 2   | 3   | 4    | 5    | Total |
|-------|----|-----|-----|------|------|-------|
| 1     | 0  | 2   | 2   | 15   | 12   | 31    |
| 2     | 4  | 9   | 14  | 171  | 144  | 342   |
| 3     | 4  | 11  | 7   | 200  | 150  | 372   |
| 4     | 20 | 112 | 179 | 642  | 381  | 1334  |
| 5     | 18 | 102 | 145 | 412  | 552  | 1229  |
| Total | 46 | 236 | 347 | 1440 | 1239 | 3308  |

Synthetic (Full) Matrix - Total Trips

|       | 1  | 2   | 3   | 4    | 5    | Total |
|-------|----|-----|-----|------|------|-------|
| 1     | 0  | 2   | 2   | 15   | 12   | 31    |
| 2     | 4  | 9   | 14  | 171  | 144  | 342   |
| 3     | 4  | 11  | 7   | 200  | 150  | 372   |
| 4     | 20 | 112 | 179 | 642  | 382  | 1335  |
| 5     | 18 | 102 | 145 | 412  | 552  | 1229  |
| Total | 46 | 236 | 347 | 1440 | 1240 | 3309  |

### **RSI Matrix - % of Total**

|       | 1  | 2  | 3   | 4   | 5   | Total |
|-------|----|----|-----|-----|-----|-------|
| 1     | 0% | 0% | 0%  | 1%  | 1%  | 1%    |
| 2     | 0% | 0% | 0%  | 6%  | 6%  | 12%   |
| 3     | 0% | 0% | 0%  | 6%  | 7%  | 13%   |
| 4     | 1% | 4% | 6%  | 8%  | 14% | 33%   |
| 5     | 1% | 4% | 5%  | 15% | 16% | 41%   |
| Total | 1% | 8% | 11% | 36% | 44% | 100%  |

### Synthetic (Observed) Matrix - % of Total

|       | 1  | 2  | 3   | 4   | 5   | Total |
|-------|----|----|-----|-----|-----|-------|
| 1     | 0% | 0% | 0%  | 0%  | 0%  | 1%    |
| 2     | 0% | 0% | 0%  | 5%  | 4%  | 10%   |
| 3     | 0% | 0% | 0%  | 6%  | 5%  | 11%   |
| 4     | 1% | 3% | 5%  | 19% | 12% | 40%   |
| 5     | 1% | 3% | 4%  | 12% | 17% | 37%   |
| Total | 1% | 7% | 10% | 44% | 37% | 100%  |

|       | 1  | 2  | 3   | 4   | 5   | Total |
|-------|----|----|-----|-----|-----|-------|
| 1     | 0% | 0% | 0%  | 0%  | 0%  | 1%    |
| 2     | 0% | 0% | 0%  | 5%  | 4%  | 10%   |
| 3     | 0% | 0% | 0%  | 6%  | 5%  | 11%   |
| 4     | 1% | 3% | 5%  | 19% | 12% | 40%   |
| 5     | 1% | 3% | 4%  | 12% | 17% | 37%   |
| Total | 1% | 7% | 10% | 44% | 37% | 100%  |

### Inter peak gravity model

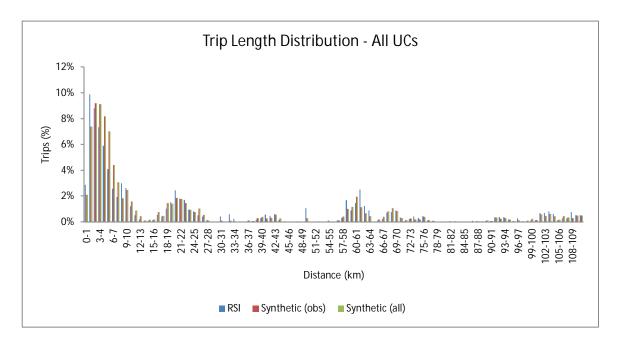



Figure B.5 – Interpeak - Overall trip length distribution (UC1 to UC3)

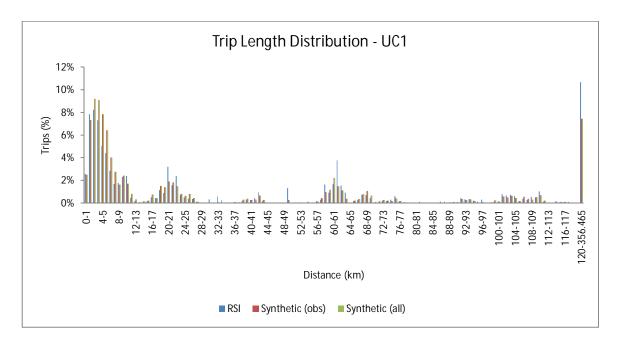



Figure B.6 – Interpeak – UC1 trip length distribution

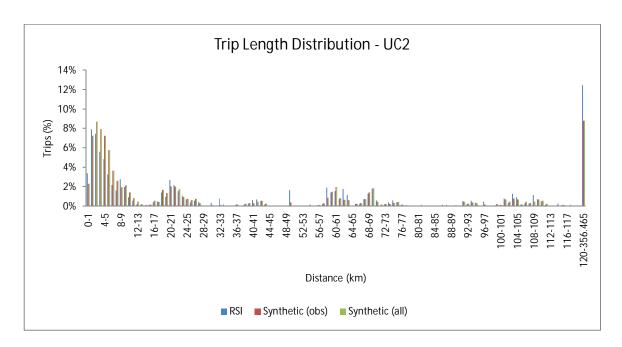



Figure B.7 – Interpeak – UC2 trip length distribution

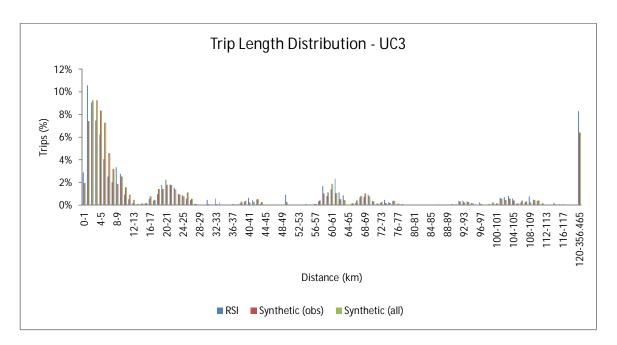



Figure B.8 – Interpeak – UC3 trip length distribution

NB - Intra-zonals are removed

**RSI Matrix - Total Trips** 

|       | 1  | 2   | 3  | 4   | 5   | Total |
|-------|----|-----|----|-----|-----|-------|
| 1     | 0  | 0   | 0  | 18  | 7   | 25    |
| 2     | 0  | 0   | 0  | 117 | 39  | 156   |
| 3     | 0  | 0   | 0  | 126 | 37  | 163   |
| 4     | 12 | 68  | 50 | 228 | 79  | 437   |
| 5     | 12 | 59  | 38 | 224 | 126 | 459   |
| Total | 24 | 127 | 88 | 713 | 288 | 1240  |

Synthetic (Observed) Matrix - Total Trips

|       | 1  | 2   | 3   | 4   | 5   | Total |
|-------|----|-----|-----|-----|-----|-------|
| 1     | 0  | 3   | 2   | 17  | 10  | 32    |
| 2     | 3  | 10  | 9   | 108 | 67  | 197   |
| 3     | 3  | 12  | 5   | 116 | 68  | 204   |
| 4     | 18 | 99  | 76  | 327 | 172 | 692   |
| 5     | 18 | 100 | 72  | 281 | 235 | 706   |
| Total | 42 | 224 | 164 | 849 | 552 | 1831  |

Synthetic (Full) Matrix - Total Trips

|       | 1  | 2   | 3   | 4   | 5   | Total |
|-------|----|-----|-----|-----|-----|-------|
| 1     | 0  | 3   | 2   | 17  | 10  | 32    |
| 2     | 3  | 10  | 9   | 108 | 67  | 197   |
| 3     | 3  | 12  | 5   | 116 | 68  | 204   |
| 4     | 18 | 99  | 76  | 328 | 172 | 693   |
| 5     | 18 | 100 | 72  | 281 | 235 | 706   |
| Total | 42 | 224 | 164 | 850 | 552 | 1832  |

### **RSI Matrix - % of Total**

|       | 1  | 2   | 3  | 4   | 5   | Total |
|-------|----|-----|----|-----|-----|-------|
| 1     | 0% | 0%  | 0% | 1%  | 1%  | 2%    |
| 2     | 0% | 0%  | 0% | 9%  | 3%  | 13%   |
| 3     | 0% | 0%  | 0% | 10% | 3%  | 13%   |
| 4     | 1% | 5%  | 4% | 18% | 6%  | 35%   |
| 5     | 1% | 5%  | 3% | 18% | 10% | 37%   |
| Total | 2% | 10% | 7% | 58% | 23% | 100%  |

### Synthetic (Observed) Matrix - % of Total

|       | 1  | 2   | 3  | 4   | 5   | Total |
|-------|----|-----|----|-----|-----|-------|
| 1     | 0% | 0%  | 0% | 1%  | 1%  | 2%    |
| 2     | 0% | 1%  | 0% | 6%  | 4%  | 11%   |
| 3     | 0% | 1%  | 0% | 6%  | 4%  | 11%   |
| 4     | 1% | 5%  | 4% | 18% | 9%  | 38%   |
| 5     | 1% | 5%  | 4% | 15% | 13% | 39%   |
| Total | 2% | 12% | 9% | 46% | 30% | 100%  |

|       | 1  | 2   | 3  | 4   | 5   | Total |
|-------|----|-----|----|-----|-----|-------|
| 1     | 0% | 0%  | 0% | 1%  | 1%  | 2%    |
| 2     | 0% | 1%  | 0% | 6%  | 4%  | 11%   |
| 3     | 0% | 1%  | 0% | 6%  | 4%  | 11%   |
| 4     | 1% | 5%  | 4% | 18% | 9%  | 38%   |
| 5     | 1% | 5%  | 4% | 15% | 13% | 39%   |
| Total | 2% | 12% | 9% | 46% | 30% | 100%  |

NB - Intra-zonals are removed

#### **RSI Matrix - Total Trips**

|       | 1  | 2  | 3  | 4   | 5   | Total |
|-------|----|----|----|-----|-----|-------|
| 1     | 0  | 0  | 0  | 5   | 2   | 7     |
| 2     | 0  | 0  | 0  | 29  | 15  | 44    |
| 3     | 0  | 0  | 0  | 29  | 15  | 44    |
| 4     | 8  | 43 | 29 | 76  | 51  | 207   |
| 5     | 4  | 22 | 16 | 44  | 39  | 125   |
| Total | 12 | 65 | 45 | 183 | 122 | 427   |

#### Synthetic (Observed) Matrix - Total Trips

|       | 1  | 2  | 3  | 4   | 5   | Total |
|-------|----|----|----|-----|-----|-------|
| 1     | 0  | 1  | 1  | 6   | 3   | 11    |
| 2     | 1  | 5  | 5  | 36  | 23  | 70    |
| 3     | 1  | 6  | 3  | 39  | 23  | 72    |
| 4     | 8  | 47 | 36 | 117 | 70  | 278   |
| 5     | 6  | 36 | 27 | 81  | 65  | 215   |
| Total | 16 | 95 | 72 | 279 | 184 | 646   |

## Synthetic (Full) Matrix - Total Trips

|       | 1  | 2  | 3  | 4   | 5   | Total |
|-------|----|----|----|-----|-----|-------|
| 1     | 0  | 1  | 1  | 6   | 3   | 11    |
| 2     | 1  | 5  | 5  | 36  | 23  | 70    |
| 3     | 1  | 6  | 3  | 39  | 23  | 72    |
| 4     | 8  | 47 | 36 | 117 | 70  | 278   |
| 5     | 6  | 36 | 27 | 81  | 65  | 215   |
| Total | 16 | 95 | 72 | 279 | 184 | 646   |

#### **RSI Matrix - % of Total**

|       | 1  | 2   | 3   | 4   | 5   | Total |
|-------|----|-----|-----|-----|-----|-------|
| 1     | 0% | 0%  | 0%  | 1%  | 0%  | 2%    |
| 2     | 0% | 0%  | 0%  | 7%  | 4%  | 10%   |
| 3     | 0% | 0%  | 0%  | 7%  | 4%  | 10%   |
| 4     | 2% | 10% | 7%  | 18% | 12% | 48%   |
| 5     | 1% | 5%  | 4%  | 10% | 9%  | 29%   |
| Total | 3% | 15% | 11% | 43% | 29% | 100%  |

#### Synthetic (Observed) Matrix - % of Total

|       | 1  | 2   | 3   | 4   | 5   | Total |
|-------|----|-----|-----|-----|-----|-------|
| 1     | 0% | 0%  | 0%  | 1%  | 0%  | 2%    |
| 2     | 0% | 1%  | 1%  | 6%  | 4%  | 11%   |
| 3     | 0% | 1%  | 0%  | 6%  | 4%  | 11%   |
| 4     | 1% | 7%  | 6%  | 18% | 11% | 43%   |
| 5     | 1% | 6%  | 4%  | 13% | 10% | 33%   |
| Total | 2% | 15% | 11% | 43% | 28% | 100%  |

|   |       | 1  | 2   | 3   | 4   | 5   | Total |
|---|-------|----|-----|-----|-----|-----|-------|
|   | 1     | 0% | 0%  | 0%  | 1%  | 0%  | 2%    |
|   | 2     | 0% | 1%  | 1%  | 6%  | 4%  | 11%   |
|   | 3     | 0% | 1%  | 0%  | 6%  | 4%  | 11%   |
|   | 4     | 1% | 7%  | 6%  | 18% | 11% | 43%   |
|   | 5     | 1% | 6%  | 4%  | 13% | 10% | 33%   |
| 1 | Total | 2% | 15% | 11% | 43% | 28% | 100%  |

NB - Intra-zonals are removed

**RSI Matrix - Total Trips** 

|       | 1  | 2   | 3   | 4    | 5    | Total |
|-------|----|-----|-----|------|------|-------|
| 1     | 0  | 0   | 0   | 34   | 34   | 68    |
| 2     | 0  | 0   | 0   | 234  | 237  | 471   |
| 3     | 0  | 0   | 0   | 269  | 241  | 510   |
| 4     | 49 | 293 | 241 | 702  | 782  | 2067  |
| 5     | 39 | 219 | 142 | 494  | 817  | 1711  |
| Total | 88 | 512 | 383 | 1733 | 2111 | 4827  |

Synthetic (Observed) Matrix - Total Trips

|       | 1   | 2   | 3   | 4    | 5    | Total |
|-------|-----|-----|-----|------|------|-------|
| 1     | 1   | 8   | 7   | 45   | 38   | 99    |
| 2     | 10  | 35  | 34  | 312  | 268  | 659   |
| 3     | 10  | 47  | 21  | 367  | 297  | 742   |
| 4     | 54  | 326 | 273 | 1063 | 860  | 2576  |
| 5     | 49  | 297 | 236 | 864  | 967  | 2413  |
| Total | 124 | 713 | 571 | 2651 | 2430 | 6489  |

Synthetic (Full) Matrix - Total Trips

|       | 1   | 2   | 3   | 4    | 5    | Total |
|-------|-----|-----|-----|------|------|-------|
| 1     | 1   | 8   | 7   | 45   | 38   | 99    |
| 2     | 10  | 35  | 34  | 312  | 268  | 659   |
| 3     | 10  | 47  | 21  | 367  | 297  | 742   |
| 4     | 54  | 326 | 273 | 1064 | 860  | 2577  |
| 5     | 49  | 297 | 236 | 864  | 967  | 2413  |
| Total | 124 | 713 | 571 | 2652 | 2430 | 6490  |

#### **RSI Matrix - % of Total**

|       | 1  | 2   | 3  | 4   | 5   | Total |
|-------|----|-----|----|-----|-----|-------|
| 1     | 0% | 0%  | 0% | 1%  | 1%  | 1%    |
| 2     | 0% | 0%  | 0% | 5%  | 5%  | 10%   |
| 3     | 0% | 0%  | 0% | 6%  | 5%  | 11%   |
| 4     | 1% | 6%  | 5% | 15% | 16% | 43%   |
| 5     | 1% | 5%  | 3% | 10% | 17% | 35%   |
| Total | 2% | 11% | 8% | 36% | 44% | 100%  |

#### Synthetic (Observed) Matrix - % of Total

|       | 1  | 2   | 3  | 4   | 5   | Total |
|-------|----|-----|----|-----|-----|-------|
| 1     | 0% | 0%  | 0% | 1%  | 1%  | 2%    |
| 2     | 0% | 1%  | 1% | 5%  | 4%  | 10%   |
| 3     | 0% | 1%  | 0% | 6%  | 5%  | 11%   |
| 4     | 1% | 5%  | 4% | 16% | 13% | 40%   |
| 5     | 1% | 5%  | 4% | 13% | 15% | 37%   |
| Total | 2% | 11% | 9% | 41% | 37% | 100%  |

|       | 1  | 2   | 3  | 4   | 5   | Total |
|-------|----|-----|----|-----|-----|-------|
| 1     | 0% | 0%  | 0% | 1%  | 1%  | 2%    |
| 2     | 0% | 1%  | 1% | 5%  | 4%  | 10%   |
| 3     | 0% | 1%  | 0% | 6%  | 5%  | 11%   |
| 4     | 1% | 5%  | 4% | 16% | 13% | 40%   |
| 5     | 1% | 5%  | 4% | 13% | 15% | 37%   |
| Total | 2% | 11% | 9% | 41% | 37% | 100%  |

#### PM peak gravity model

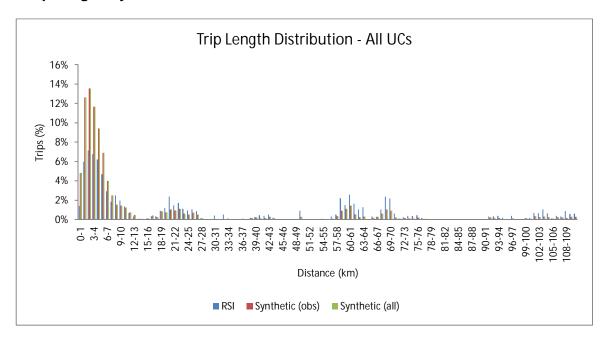



Figure B.9 – PM peak - Overall trip length distribution (UC1 to UC3)

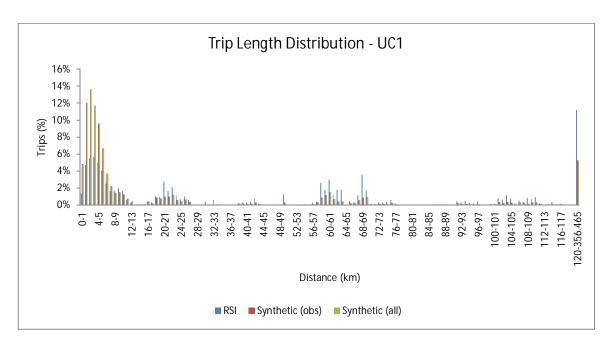



Figure B.10 – PM peak – UC1 trip length distribution

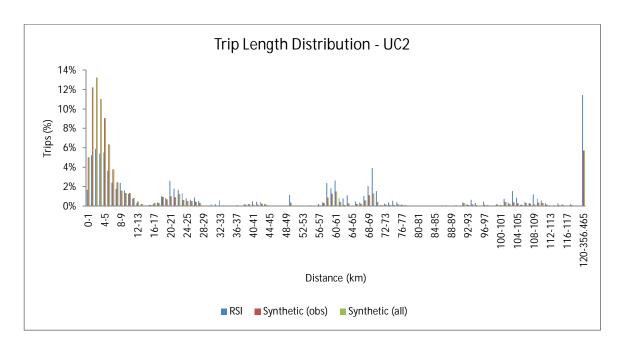



Figure B.11 – PM peak – UC2 trip length distribution

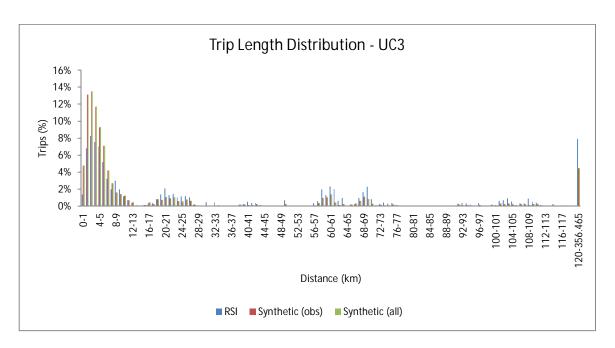



Figure B.12 – PM peak – UC3 trip length distribution

NB - Intra-zonals are removed

#### **RSI Matrix - Total Trips**

|       | 1  | 2   | 3   | 4    | 5   | Total |
|-------|----|-----|-----|------|-----|-------|
| 1     | 0  | 0   | 0   | 38   | 14  | 52    |
| 2     | 0  | 0   | 0   | 255  | 96  | 351   |
| 3     | 0  | 0   | 0   | 341  | 176 | 517   |
| 4     | 34 | 196 | 180 | 320  | 282 | 1012  |
| 5     | 27 | 135 | 133 | 352  | 240 | 887   |
| Total | 61 | 331 | 313 | 1306 | 808 | 2819  |

#### Synthetic (Observed) Matrix - Total Trips

|       | 1  | 2   | 3   | 4    | 5    | Total |
|-------|----|-----|-----|------|------|-------|
| 1     | 2  | 14  | 12  | 21   | 13   | 62    |
| 2     | 16 | 47  | 49  | 192  | 121  | 425   |
| 3     | 22 | 78  | 32  | 311  | 171  | 614   |
| 4     | 29 | 201 | 219 | 1786 | 617  | 2852  |
| 5     | 30 | 217 | 207 | 1050 | 1183 | 2687  |
| Total | 99 | 557 | 519 | 3360 | 2105 | 6640  |

## Synthetic (Full) Matrix - Total Trips

|       | 1  | 2   | 3   | 4    | 5    | Total |
|-------|----|-----|-----|------|------|-------|
| 1     | 2  | 14  | 12  | 21   | 13   | 62    |
| 2     | 16 | 47  | 49  | 192  | 121  | 425   |
| 3     | 22 | 78  | 32  | 311  | 171  | 614   |
| 4     | 29 | 201 | 219 | 1787 | 618  | 2854  |
| 5     | 30 | 217 | 207 | 1051 | 1183 | 2688  |
| Total | 99 | 557 | 519 | 3362 | 2106 | 6643  |

#### **RSI Matrix - % of Total**

|       | 1  | 2   | 3   | 4   | 5   | Total |
|-------|----|-----|-----|-----|-----|-------|
| 1     | 0% | 0%  | 0%  | 1%  | 0%  | 2%    |
| 2     | 0% | 0%  | 0%  | 9%  | 3%  | 12%   |
| 3     | 0% | 0%  | 0%  | 12% | 6%  | 18%   |
| 4     | 1% | 7%  | 6%  | 11% | 10% | 36%   |
| 5     | 1% | 5%  | 5%  | 12% | 9%  | 31%   |
| Total | 2% | 12% | 11% | 46% | 29% | 100%  |

#### Synthetic (Observed) Matrix - % of Total

|       | 1  | 2  | 3  | 4   | 5   | Total |
|-------|----|----|----|-----|-----|-------|
| 1     | 0% | 0% | 0% | 0%  | 0%  | 1%    |
| 2     | 0% | 1% | 1% | 3%  | 2%  | 6%    |
| 3     | 0% | 1% | 0% | 5%  | 3%  | 9%    |
| 4     | 0% | 3% | 3% | 27% | 9%  | 43%   |
| 5     | 0% | 3% | 3% | 16% | 18% | 40%   |
| Total | 1% | 8% | 8% | 51% | 32% | 100%  |

|       | 1  | 2  | 3  | 4   | 5   | Total |
|-------|----|----|----|-----|-----|-------|
| 1     | 0% | 0% | 0% | 0%  | 0%  | 1%    |
| 2     | 0% | 1% | 1% | 3%  | 2%  | 6%    |
| 3     | 0% | 1% | 0% | 5%  | 3%  | 9%    |
| 4     | 0% | 3% | 3% | 27% | 9%  | 43%   |
| 5     | 0% | 3% | 3% | 16% | 18% | 40%   |
| Total | 1% | 8% | 8% | 51% | 32% | 100%  |

NB - Intra-zonals are removed

**RSI Matrix - Total Trips** 

|       | 1  | 2  | 3  | 4   | 5   | Total |
|-------|----|----|----|-----|-----|-------|
| 1     | 0  | 0  | 0  | 5   | 2   | 7     |
| 2     | 0  | 0  | 0  | 32  | 14  | 46    |
| 3     | 0  | 0  | 0  | 43  | 25  | 68    |
| 4     | 8  | 46 | 41 | 59  | 64  | 218   |
| 5     | 4  | 20 | 21 | 41  | 35  | 121   |
| Total | 12 | 66 | 62 | 180 | 140 | 460   |

Synthetic (Observed) Matrix - Total Trips

|       | 1  | 2  | 3  | 4   | 5   | Total |
|-------|----|----|----|-----|-----|-------|
| 1     | 0  | 2  | 2  | 3   | 2   | 9     |
| 2     | 3  | 8  | 8  | 26  | 17  | 62    |
| 3     | 4  | 13 | 5  | 43  | 24  | 89    |
| 4     | 5  | 37 | 40 | 279 | 101 | 462   |
| 5     | 5  | 37 | 35 | 148 | 172 | 397   |
| Total | 17 | 97 | 90 | 499 | 316 | 1019  |

Synthetic (Full) Matrix - Total Trips

|       | 1  | 2  | 3  | 4   | 5   | Total |
|-------|----|----|----|-----|-----|-------|
| 1     | 0  | 2  | 2  | 3   | 2   | 9     |
| 2     | 3  | 8  | 8  | 26  | 17  | 62    |
| 3     | 4  | 13 | 5  | 43  | 24  | 89    |
| 4     | 5  | 37 | 40 | 280 | 101 | 463   |
| 5     | 5  | 37 | 35 | 148 | 172 | 397   |
| Total | 17 | 97 | 90 | 500 | 316 | 1020  |

#### **RSI Matrix - % of Total**

|       | 1  | 2   | 3   | 4   | 5   | Total |
|-------|----|-----|-----|-----|-----|-------|
| 1     | 0% | 0%  | 0%  | 1%  | 0%  | 2%    |
| 2     | 0% | 0%  | 0%  | 7%  | 3%  | 10%   |
| 3     | 0% | 0%  | 0%  | 9%  | 5%  | 15%   |
| 4     | 2% | 10% | 9%  | 13% | 14% | 47%   |
| 5     | 1% | 4%  | 5%  | 9%  | 8%  | 26%   |
| Total | 3% | 14% | 13% | 39% | 30% | 100%  |

#### Synthetic (Observed) Matrix - % of Total

|       | 1  | 2   | 3  | 4   | 5   | Total |
|-------|----|-----|----|-----|-----|-------|
| 1     | 0% | 0%  | 0% | 0%  | 0%  | 1%    |
| 2     | 0% | 1%  | 1% | 3%  | 2%  | 6%    |
| 3     | 0% | 1%  | 0% | 4%  | 2%  | 9%    |
| 4     | 0% | 4%  | 4% | 27% | 10% | 45%   |
| 5     | 0% | 4%  | 3% | 15% | 17% | 39%   |
| Total | 2% | 10% | 9% | 49% | 31% | 100%  |

|       | 1  | 2   | 3  | 4   | 5   | Total |
|-------|----|-----|----|-----|-----|-------|
| 1     | 0% | 0%  | 0% | 0%  | 0%  | 1%    |
| 2     | 0% | 1%  | 1% | 3%  | 2%  | 6%    |
| 3     | 0% | 1%  | 0% | 4%  | 2%  | 9%    |
| 4     | 0% | 4%  | 4% | 27% | 10% | 45%   |
| 5     | 0% | 4%  | 3% | 15% | 17% | 39%   |
| Total | 2% | 10% | 9% | 49% | 31% | 100%  |

NB - Intra-zonals are removed

**RSI Matrix - Total Trips** 

|       | 1  | 2   | 3   | 4    | 5    | Total |
|-------|----|-----|-----|------|------|-------|
| 1     | 0  | 0   | 0   | 31   | 30   | 61    |
| 2     | 0  | 0   | 0   | 228  | 223  | 451   |
| 3     | 0  | 0   | 0   | 320  | 394  | 714   |
| 4     | 42 | 279 | 282 | 497  | 987  | 2087  |
| 5     | 34 | 189 | 189 | 406  | 635  | 1453  |
| Total | 76 | 468 | 471 | 1482 | 2269 | 4766  |

Synthetic (Observed) Matrix - Total Trips

|       | 1   | 2   | 3   | 4    | 5    | Total |
|-------|-----|-----|-----|------|------|-------|
| 1     | 2   | 15  | 14  | 24   | 22   | 77    |
| 2     | 17  | 55  | 60  | 238  | 222  | 592   |
| 3     | 24  | 92  | 42  | 411  | 325  | 894   |
| 4     | 30  | 235 | 276 | 2312 | 1164 | 4017  |
| 5     | 27  | 224 | 229 | 1165 | 1933 | 3578  |
| Total | 100 | 621 | 621 | 4150 | 3666 | 9158  |

Synthetic (Full) Matrix - Total Trips

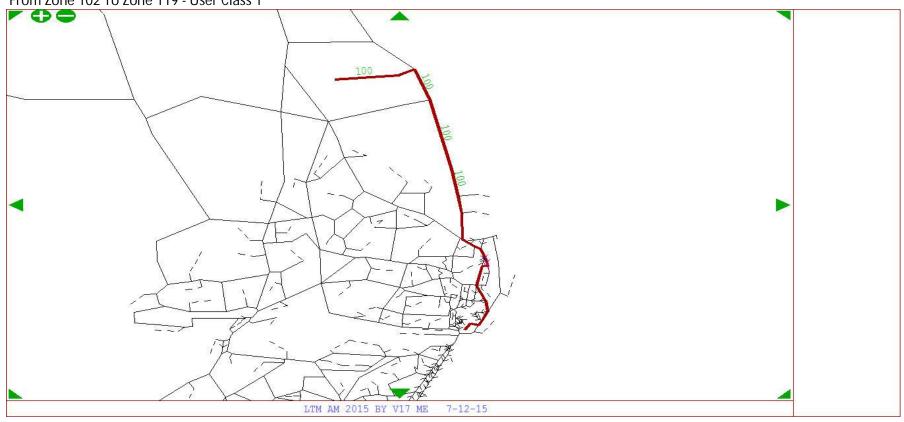
|       | 1   | 2   | 3   | 4    | 5    | Total |
|-------|-----|-----|-----|------|------|-------|
| 1     | 2   | 15  | 14  | 24   | 22   | 77    |
| 2     | 17  | 55  | 60  | 238  | 222  | 592   |
| 3     | 24  | 92  | 42  | 411  | 325  | 894   |
| 4     | 30  | 235 | 276 | 2314 | 1164 | 4019  |
| 5     | 27  | 224 | 229 | 1166 | 1933 | 3579  |
| Total | 100 | 621 | 621 | 4153 | 3666 | 9161  |

#### **RSI Matrix - % of Total**

|       | 1  | 2   | 3   | 4   | 5   | Total |
|-------|----|-----|-----|-----|-----|-------|
| 1     | 0% | 0%  | 0%  | 1%  | 1%  | 1%    |
| 2     | 0% | 0%  | 0%  | 5%  | 5%  | 9%    |
| 3     | 0% | 0%  | 0%  | 7%  | 8%  | 15%   |
| 4     | 1% | 6%  | 6%  | 10% | 21% | 44%   |
| 5     | 1% | 4%  | 4%  | 9%  | 13% | 30%   |
| Total | 2% | 10% | 10% | 31% | 48% | 100%  |

#### Synthetic (Observed) Matrix - % of Total

|       | 1  | 2  | 3  | 4   | 5   | Total |
|-------|----|----|----|-----|-----|-------|
| 1     | 0% | 0% | 0% | 0%  | 0%  | 1%    |
| 2     | 0% | 1% | 1% | 3%  | 2%  | 6%    |
| 3     | 0% | 1% | 0% | 4%  | 4%  | 10%   |
| 4     | 0% | 3% | 3% | 25% | 13% | 44%   |
| 5     | 0% | 2% | 3% | 13% | 21% | 39%   |
| Total | 1% | 7% | 7% | 45% | 40% | 100%  |


|       | 1  | 2  | 3  | 4   | 5   | Total |
|-------|----|----|----|-----|-----|-------|
| 1     | 0% | 0% | 0% | 0%  | 0%  | 1%    |
| 2     | 0% | 1% | 1% | 3%  | 2%  | 6%    |
| 3     | 0% | 1% | 0% | 4%  | 4%  | 10%   |
| 4     | 0% | 3% | 3% | 25% | 13% | 44%   |
| 5     | 0% | 2% | 2% | 13% | 21% | 39%   |
| Total | 1% | 7% | 7% | 45% | 40% | 100%  |

# Appendix C

**ORIGIN-DESTINATION TREES** 

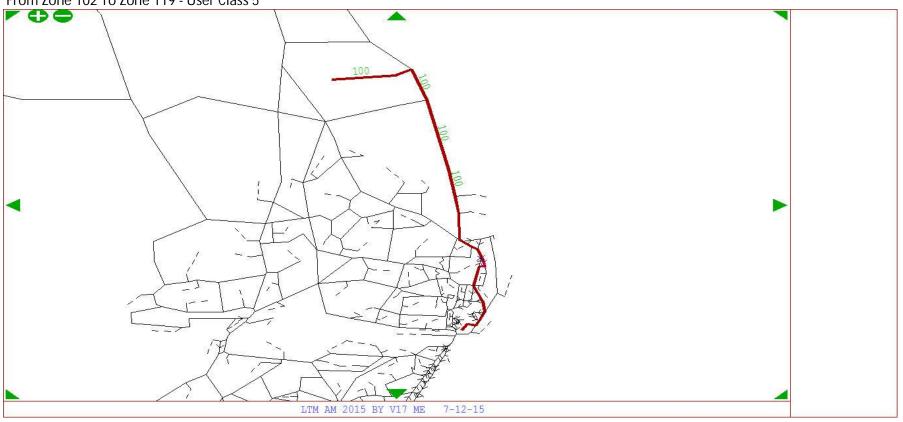
# Lowestoft: OD Tree Plots - AM Peak

From Zone 102 To Zone 119 - User Class 1



From Zone 102 To Zone 119 - User Class 2

7-12-15


From Zone 102 To Zone 119 - User Class 3

7-12-15

From Zone 102 To Zone 119 - User Class 4

7-12-15

From Zone 102 To Zone 119 - User Class 5



From Zone 102 To Zone 122 - User Class 1

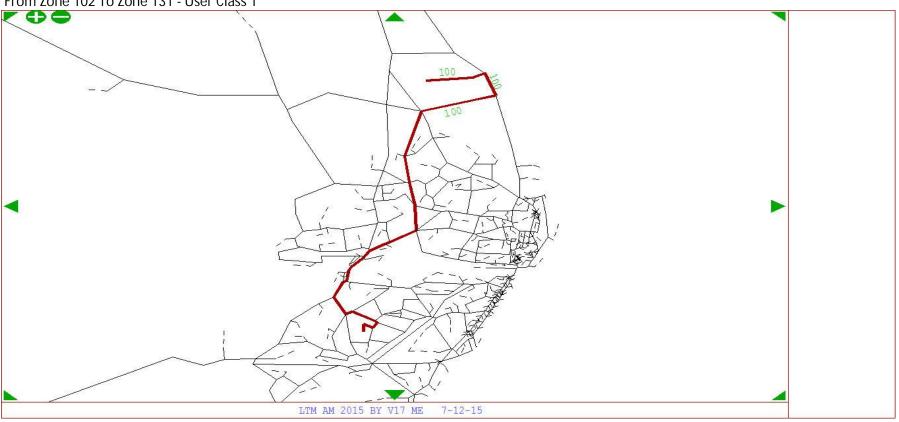
From Zone 102 To Zone 122 - User Class 2

From Zone 102 To Zone 122 - User Class 3

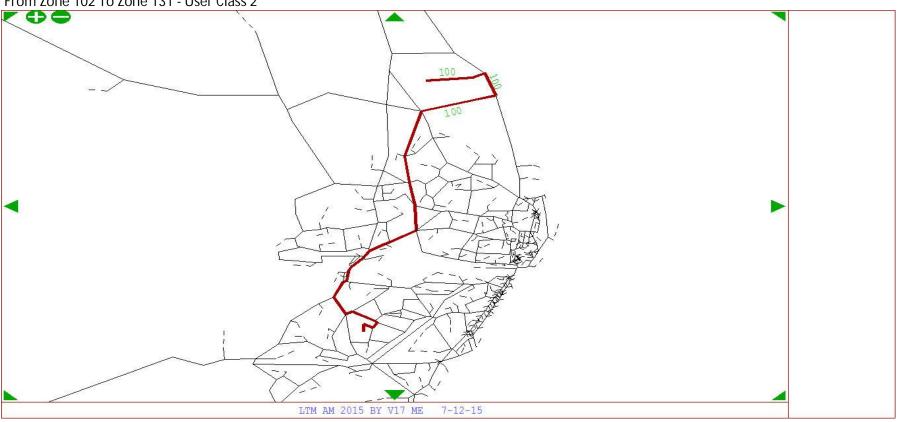
From Zone 102 To Zone 122 - User Class 4

From Zone 102 To Zone 122 - User Class 5

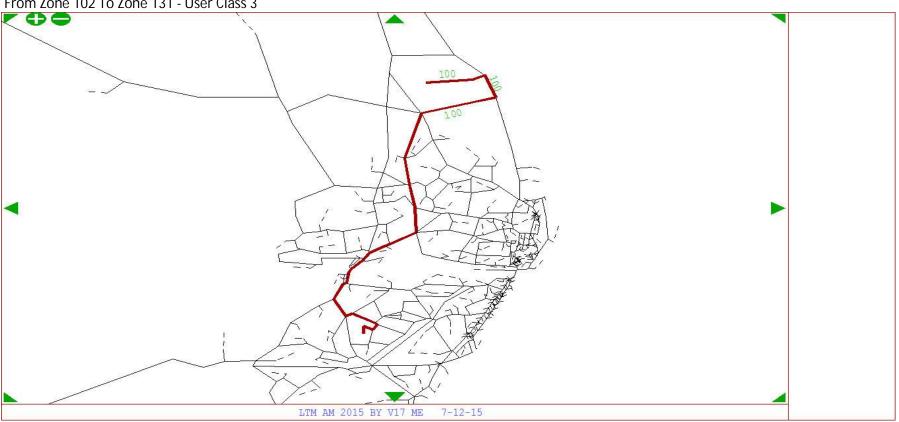
From Zone 102 To Zone 130 - User Class 1


From Zone 102 To Zone 130 - User Class 2

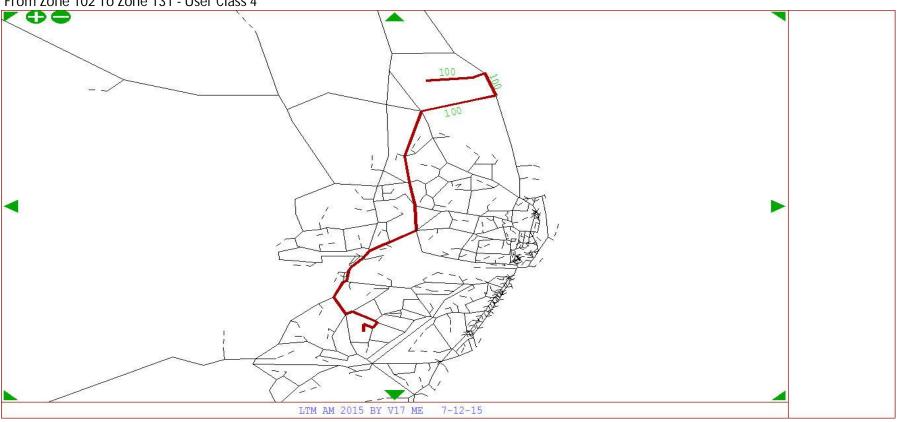
From Zone 102 To Zone 130 - User Class 3


From Zone 102 To Zone 130 - User Class 4

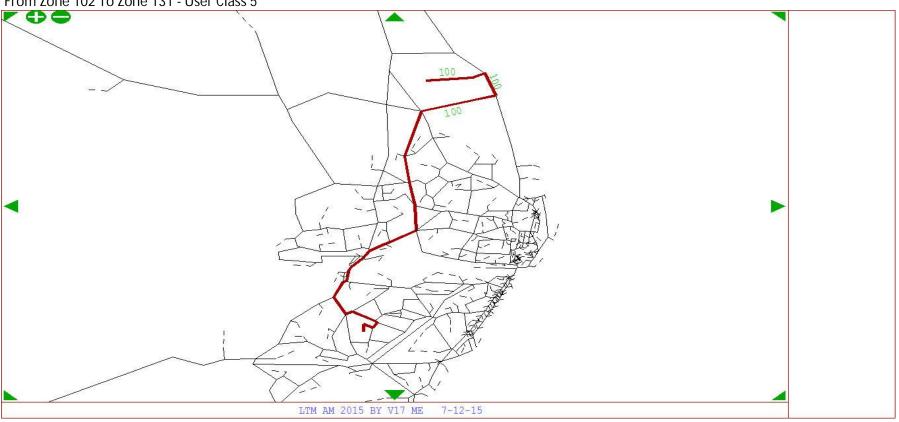
From Zone 102 To Zone 130 - User Class 5


From Zone 102 To Zone 131 - User Class 1

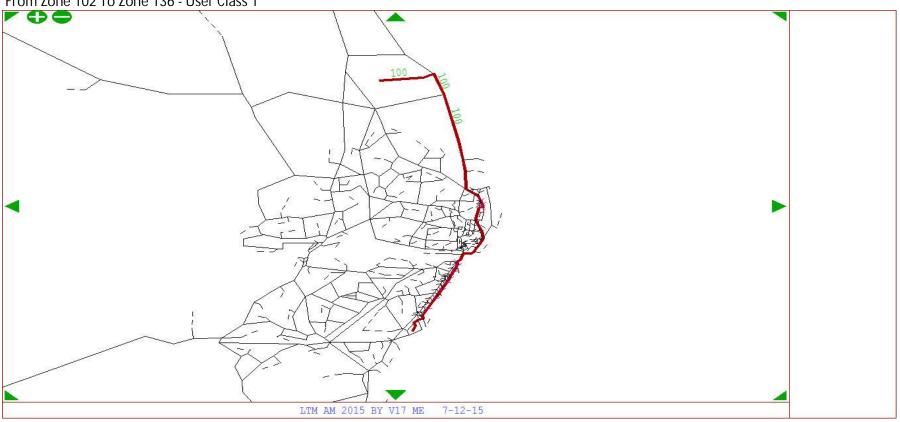



From Zone 102 To Zone 131 - User Class 2

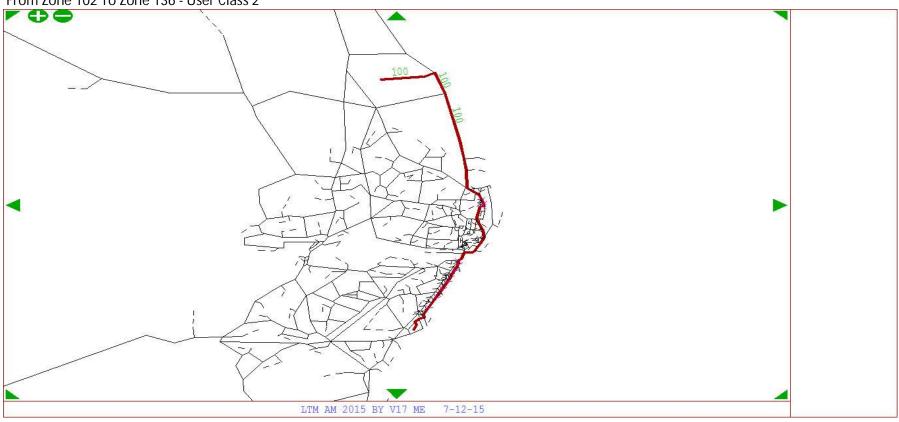



From Zone 102 To Zone 131 - User Class 3

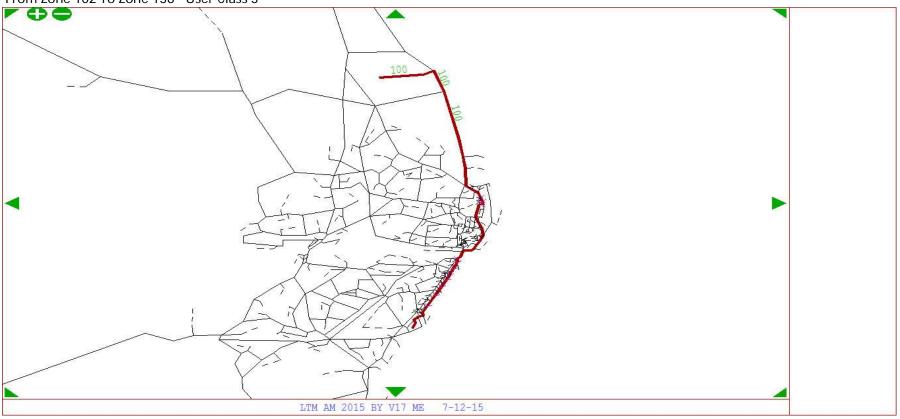



From Zone 102 To Zone 131 - User Class 4

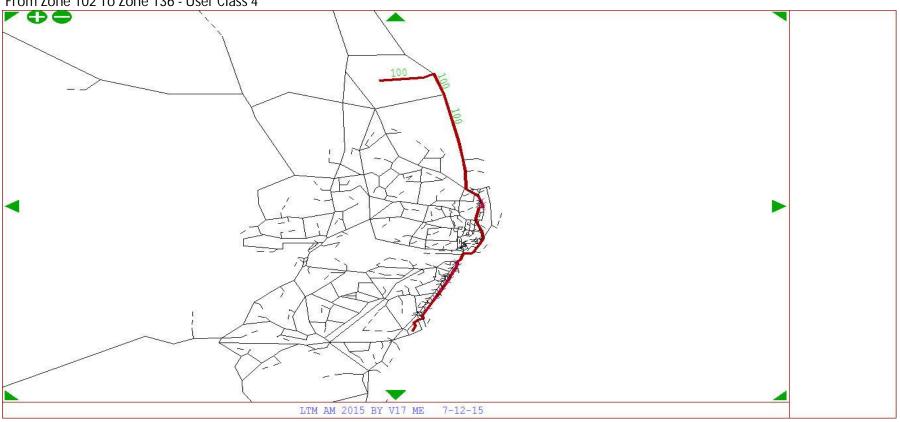



From Zone 102 To Zone 131 - User Class 5

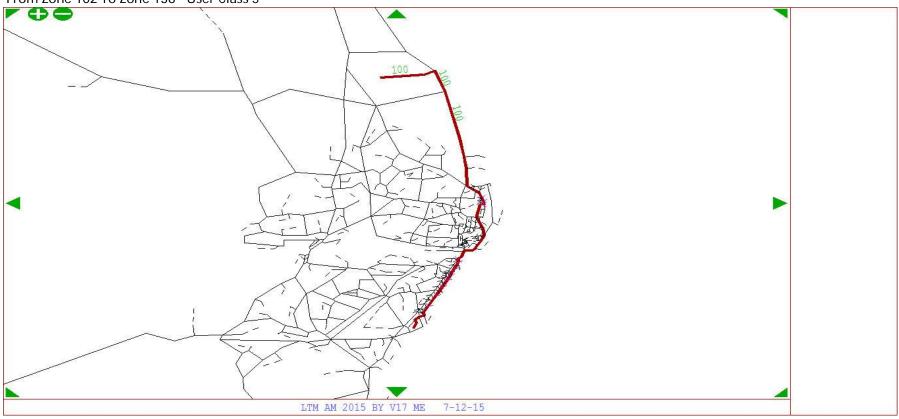



From Zone 102 To Zone 136 - User Class 1

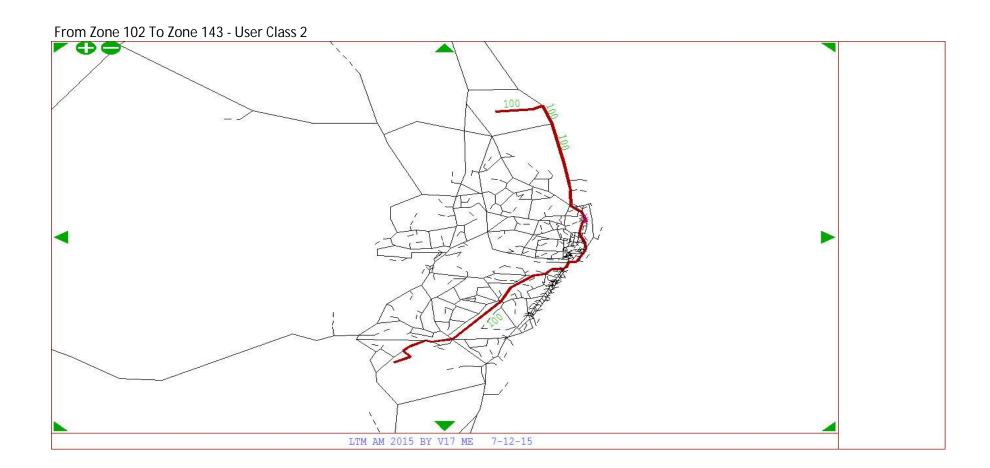


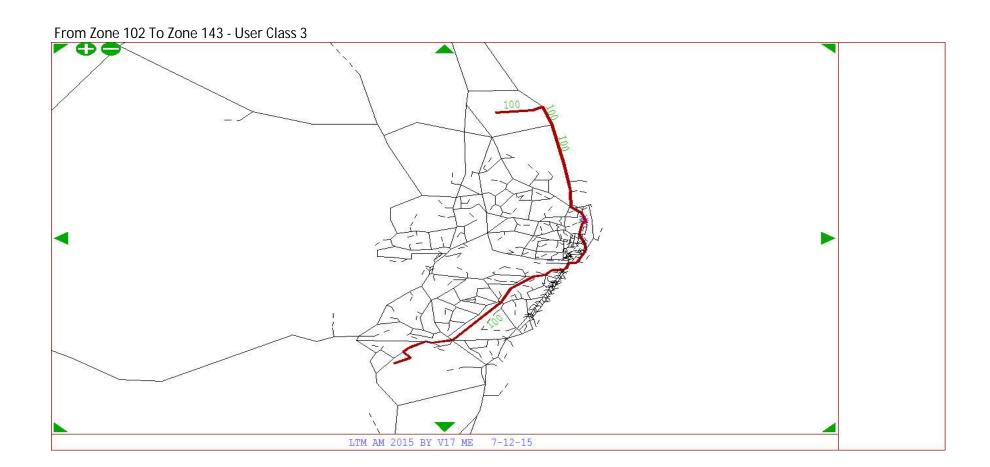

From Zone 102 To Zone 136 - User Class 2

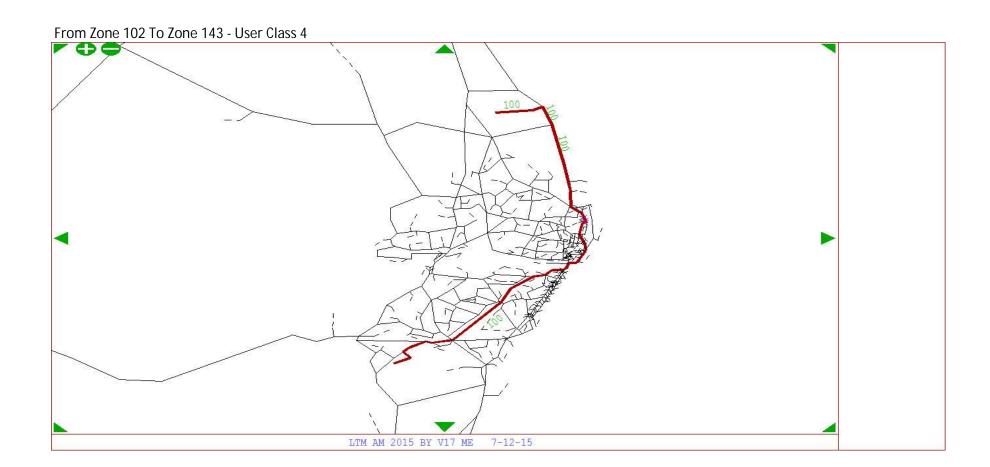



From Zone 102 To Zone 136 - User Class 3




From Zone 102 To Zone 136 - User Class 4





From Zone 102 To Zone 136 - User Class 5



From Zone 102 To Zone 143 - User Class 1 LTM AM 2015 BY V17 ME







From Zone 102 To Zone 143 - User Class 5 LTM AM 2015 BY V17 ME 7-12-15

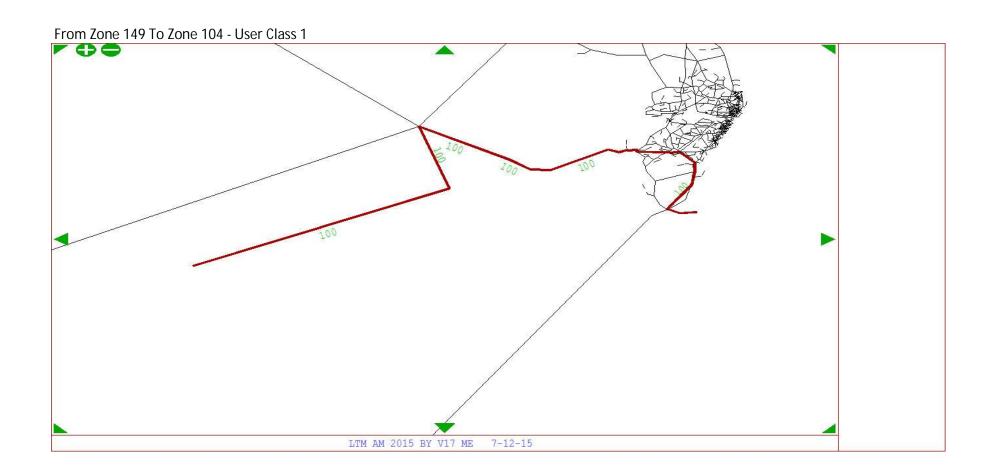
From Zone 102 To Zone 149 - User Class 1 LTM AM 2015 BY V17 ME 7-12-15

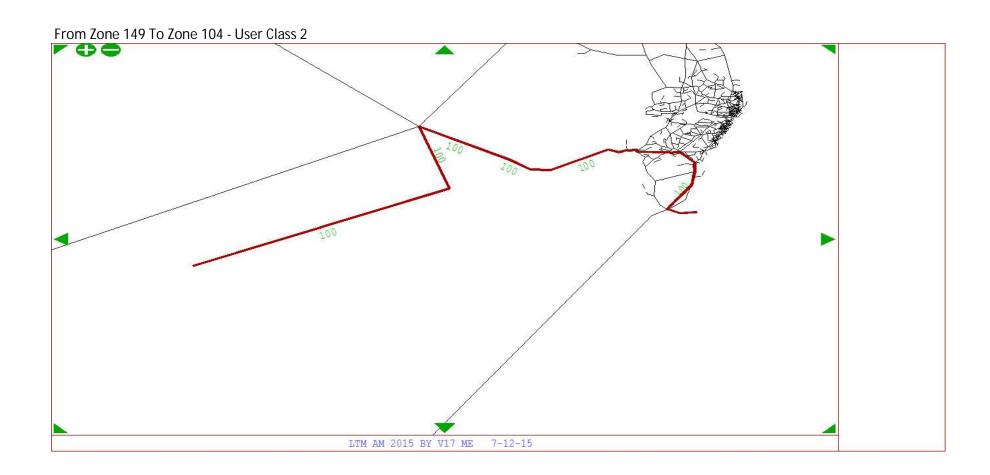
From Zone 102 To Zone 149 - User Class 2 LTM AM 2015 BY V17 ME 7-12-15

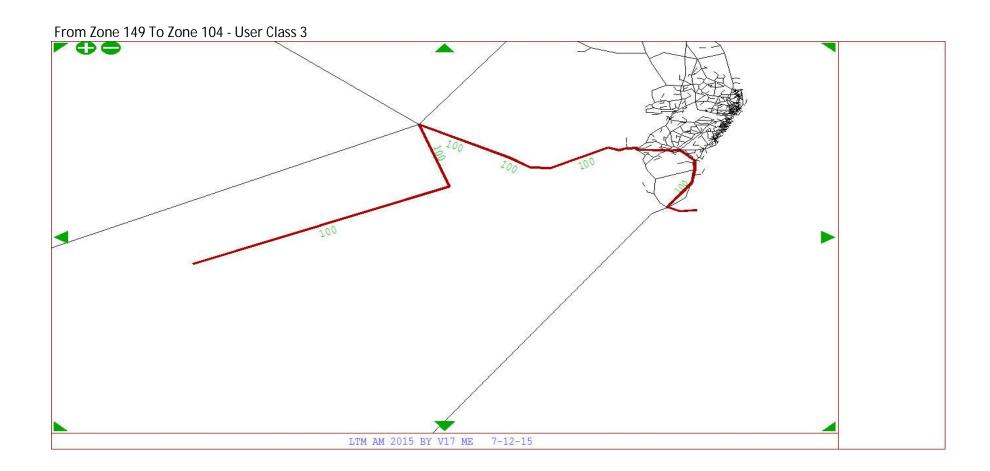
From Zone 102 To Zone 149 - User Class 3 LTM AM 2015 BY V17 ME 7-12-15

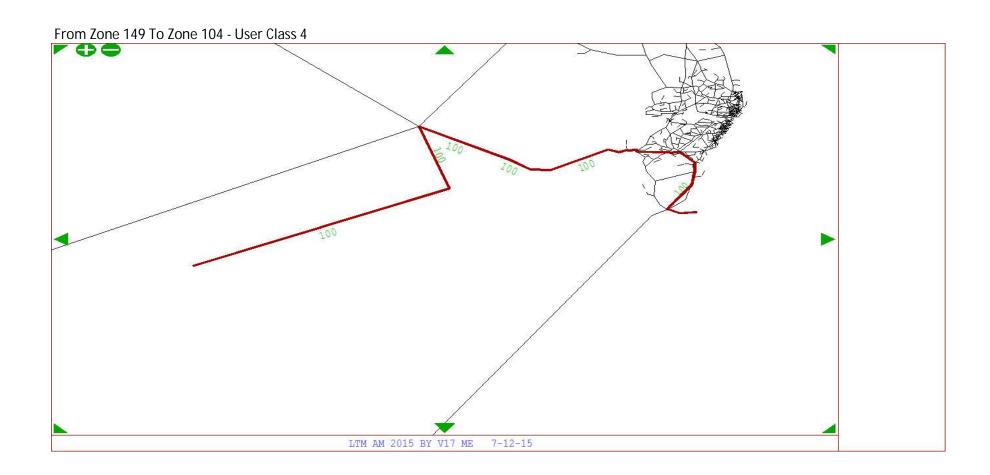
From Zone 102 To Zone 149 - User Class 4 LTM AM 2015 BY V17 ME 7-12-15

From Zone 102 To Zone 149 - User Class 5 LTM AM 2015 BY V17 ME 7-12-15


From Zone 149 To Zone 101 - User Class 1

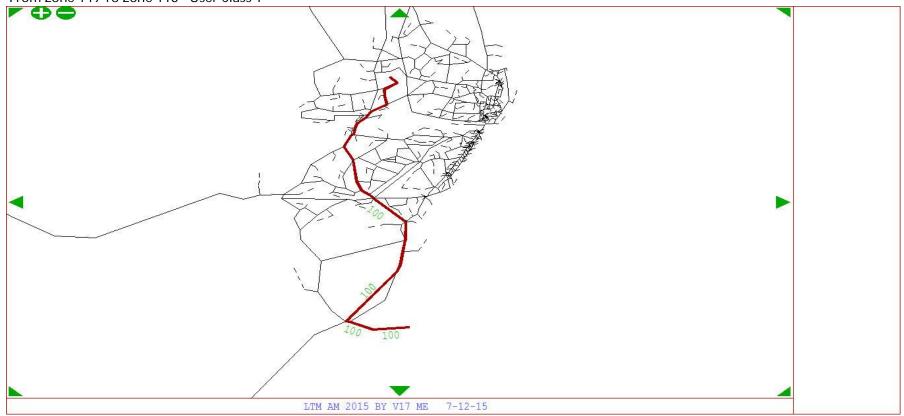

From Zone 149 To Zone 101 - User Class 2


From Zone 149 To Zone 101 - User Class 3

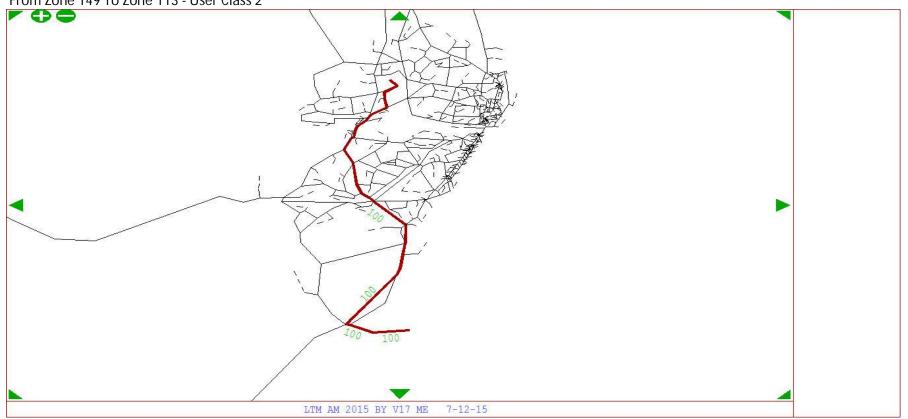

From Zone 149 To Zone 101 - User Class 4

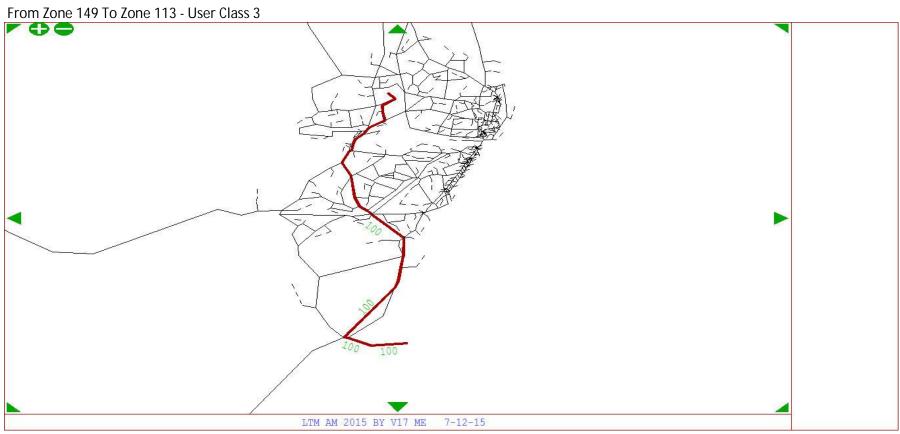
From Zone 149 To Zone 101 - User Class 5





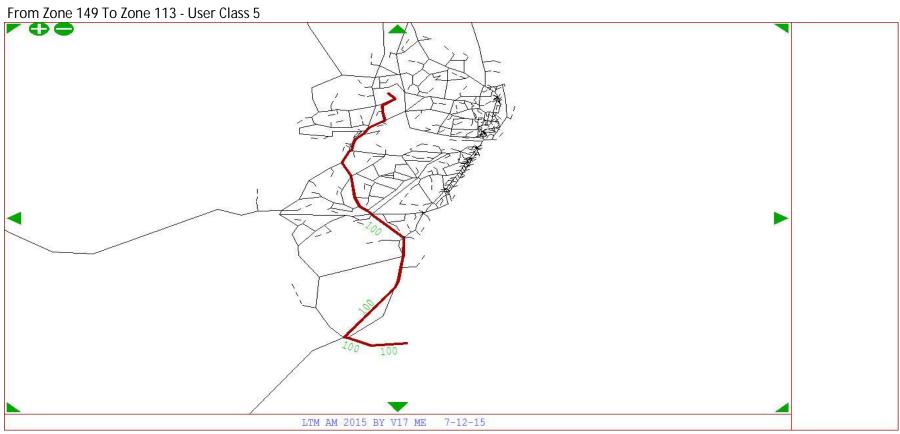




From Zone 149 To Zone 104 - User Class 5 LTM AM 2015 BY V17 ME

From Zone 149 To Zone 113 - User Class 1





From Zone 149 To Zone 113 - User Class 2



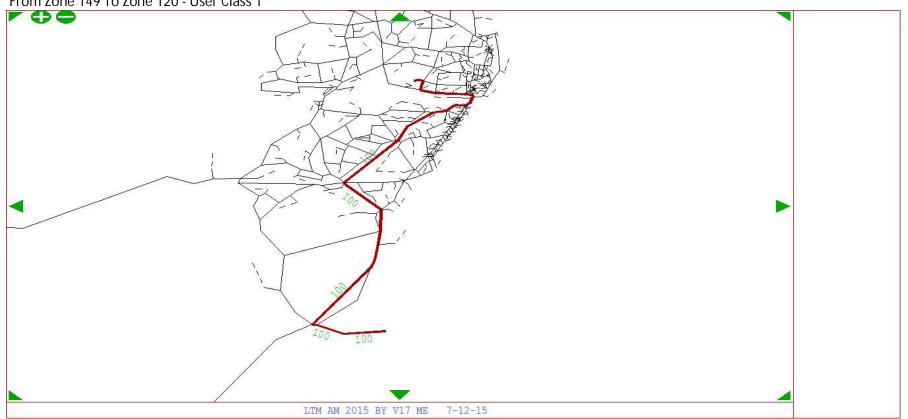


From Zone 149 To Zone 113 - User Class 4

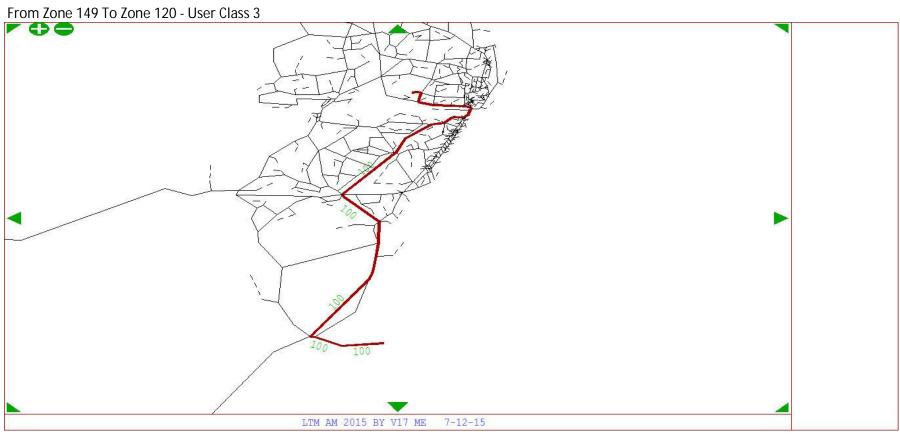




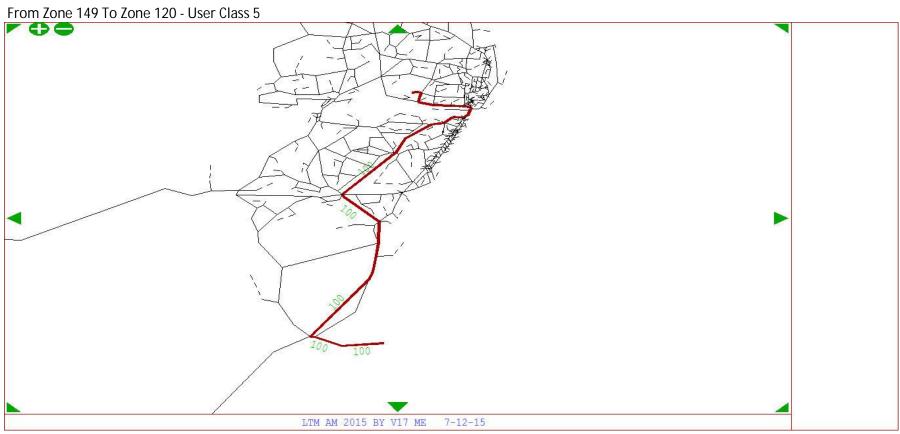
From Zone 149 To Zone 114 - User Class 1 LTM AM 2015 BY V17 ME 7-12-15


From Zone 149 To Zone 114 - User Class 2 LTM AM 2015 BY V17 ME 7-12-15

From Zone 149 To Zone 114 - User Class 3


From Zone 149 To Zone 114 - User Class 4 LTM AM 2015 BY V17 ME 7-12-15

From Zone 149 To Zone 114 - User Class 5


From Zone 149 To Zone 120 - User Class 1

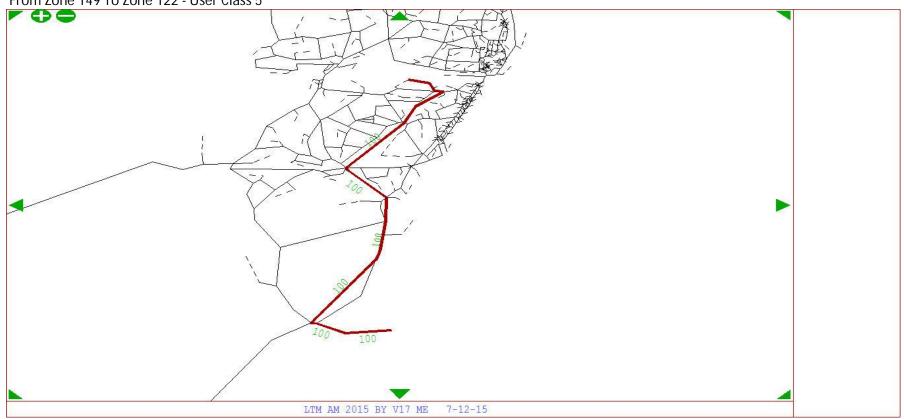


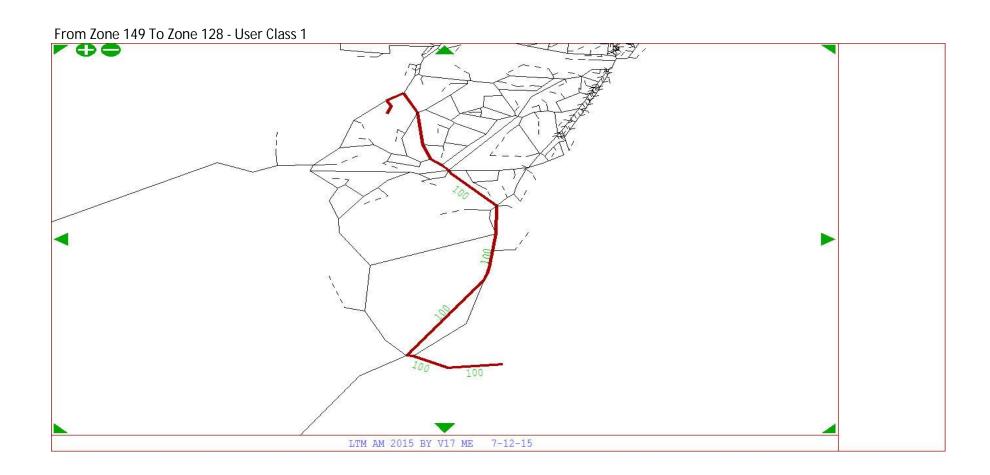
From Zone 149 To Zone 120 - User Class 2

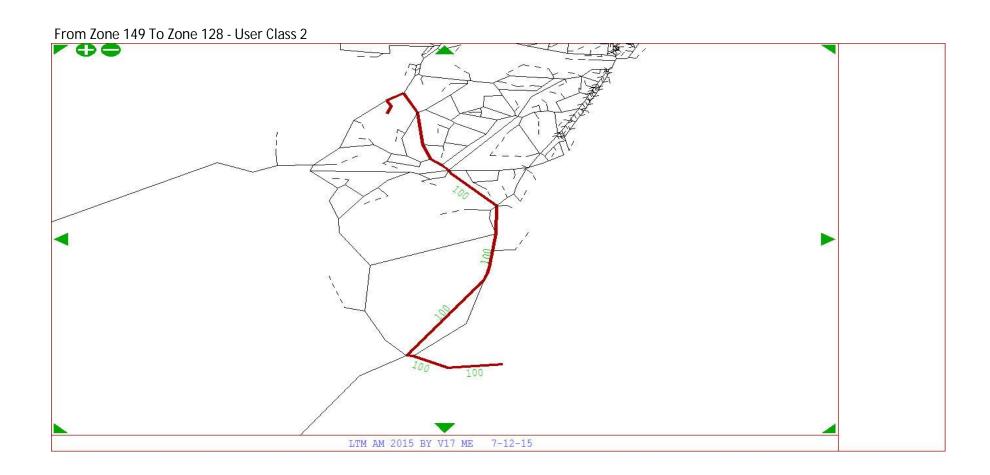


From Zone 149 To Zone 120 - User Class 4




From Zone 149 To Zone 122 - User Class 1


From Zone 149 To Zone 122 - User Class 2

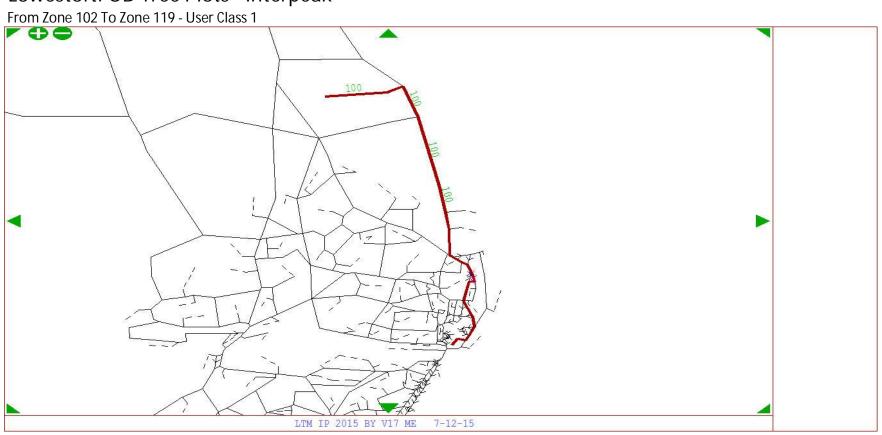

From Zone 149 To Zone 122 - User Class 3

From Zone 149 To Zone 122 - User Class 4

From Zone 149 To Zone 122 - User Class 5

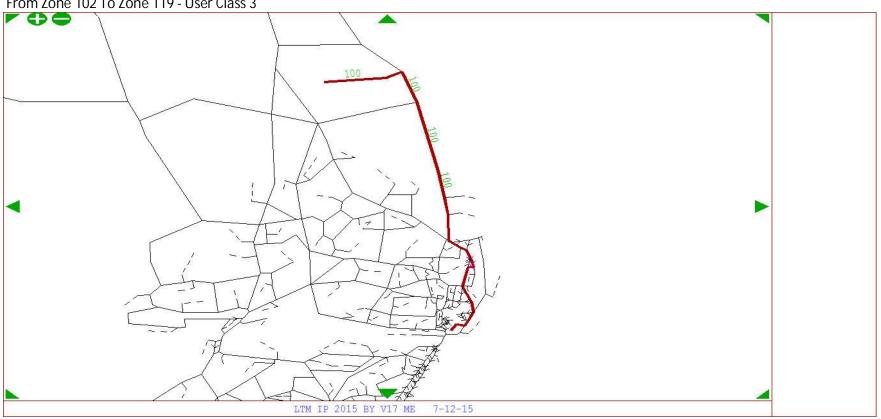






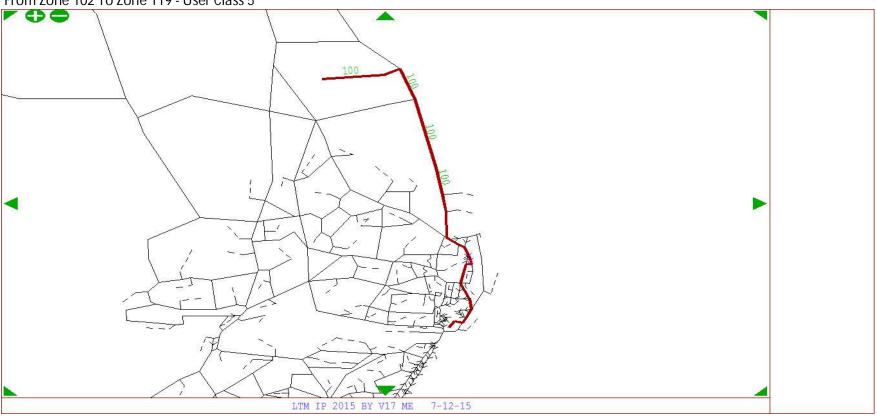

From Zone 149 To Zone 128 - User Class 3 LTM AM 2015 BY V17 ME 7-12-15

From Zone 149 To Zone 128 - User Class 4 LTM AM 2015 BY V17 ME 7-12-15


From Zone 149 To Zone 128 - User Class 5 LTM AM 2015 BY V17 ME 7-12-15

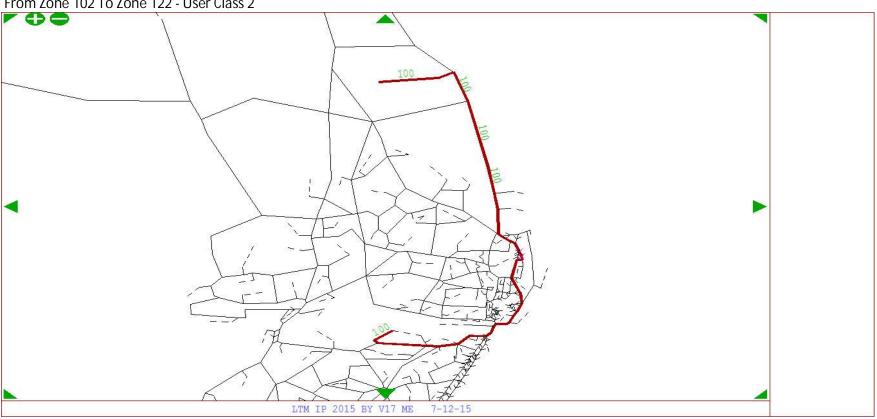
## Lowestoft: OD Tree Plots - Interpeak



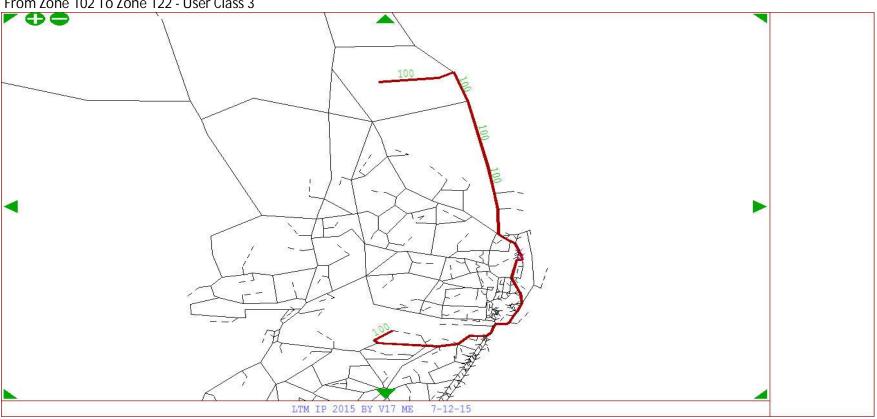

From Zone 102 To Zone 119 - User Class 2

From Zone 102 To Zone 119 - User Class 3



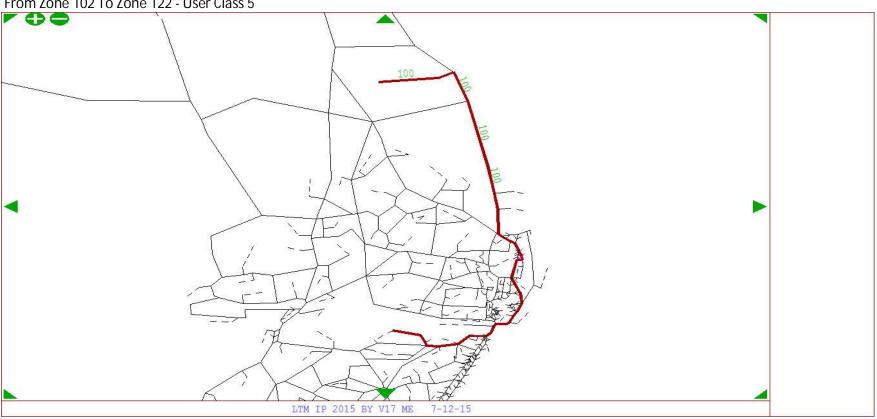

From Zone 102 To Zone 119 - User Class 4

From Zone 102 To Zone 119 - User Class 5




From Zone 102 To Zone 122 - User Class 1

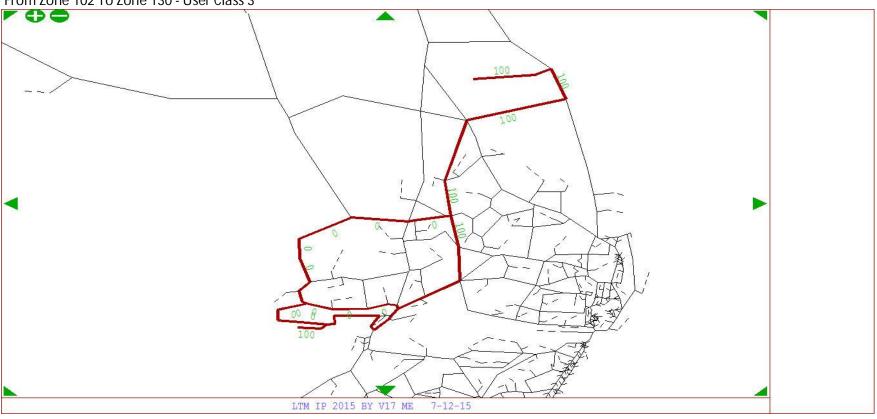
From Zone 102 To Zone 122 - User Class 2




From Zone 102 To Zone 122 - User Class 3

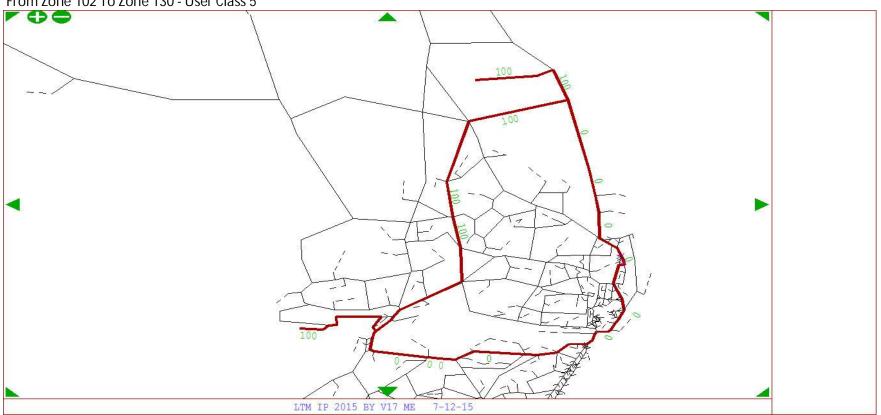


From Zone 102 To Zone 122 - User Class 4

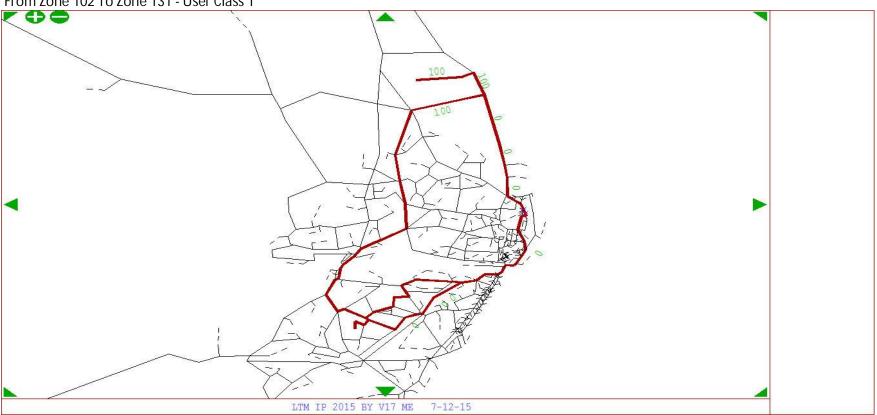

From Zone 102 To Zone 122 - User Class 5



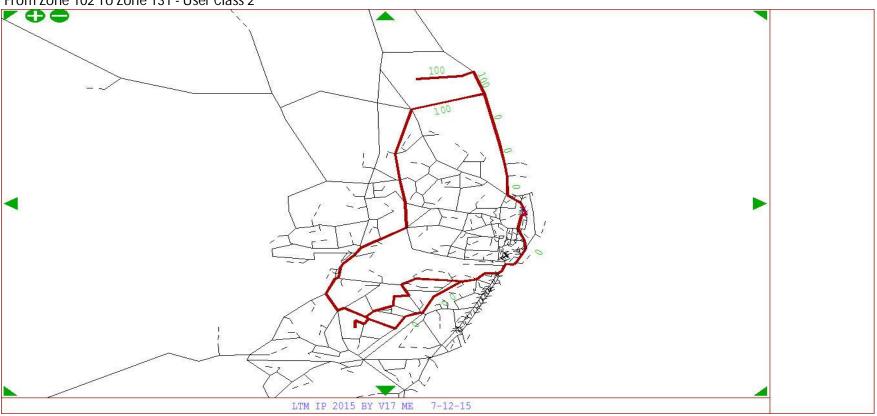
From Zone 102 To Zone 130 - User Class 1


From Zone 102 To Zone 130 - User Class 2

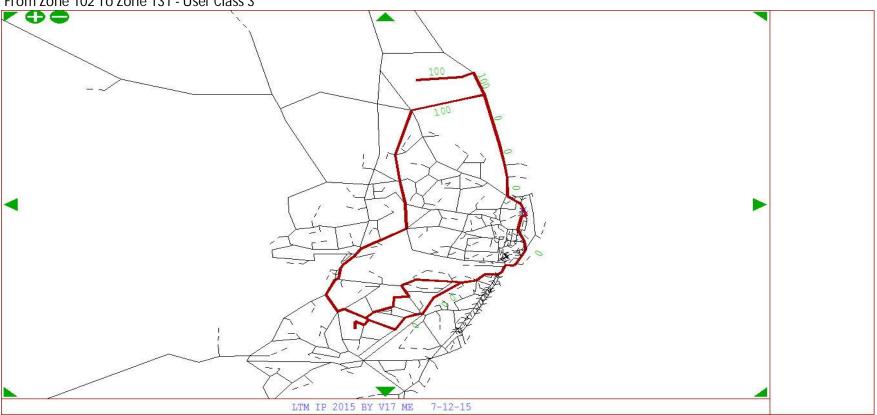
From Zone 102 To Zone 130 - User Class 3



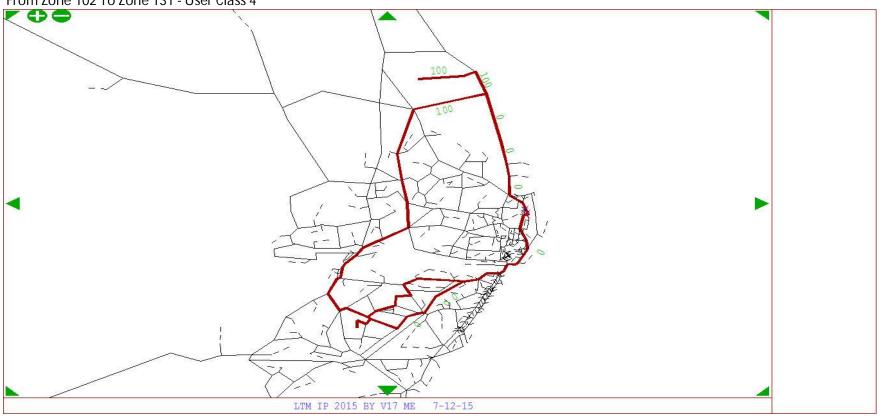

From Zone 102 To Zone 130 - User Class 4


From Zone 102 To Zone 130 - User Class 5




From Zone 102 To Zone 131 - User Class 1

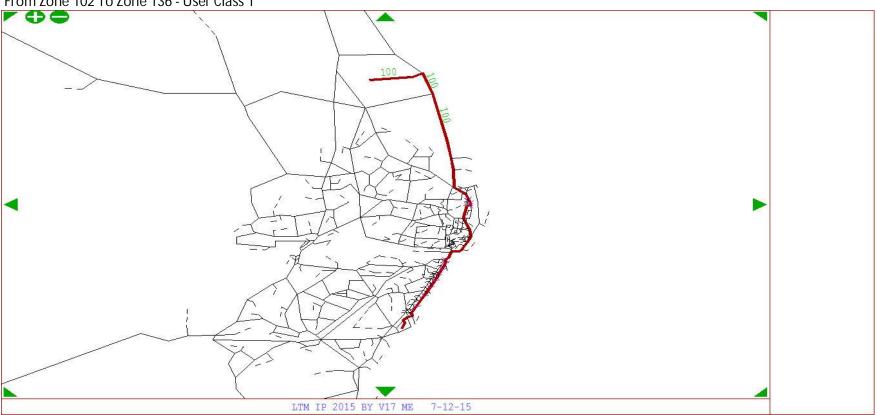



From Zone 102 To Zone 131 - User Class 2

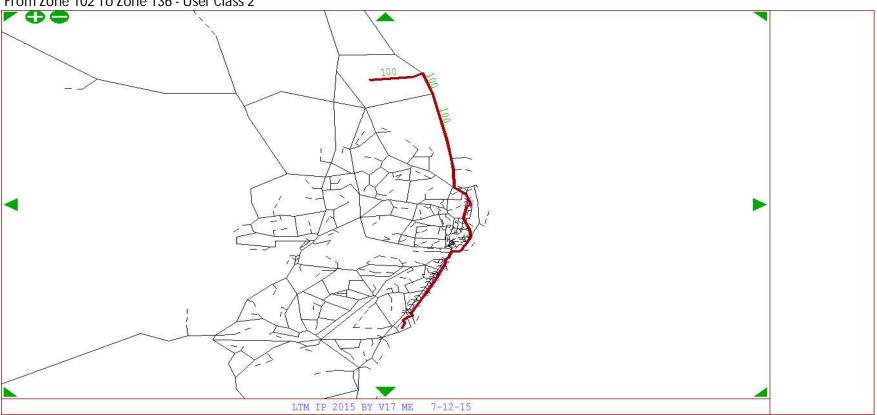


From Zone 102 To Zone 131 - User Class 3

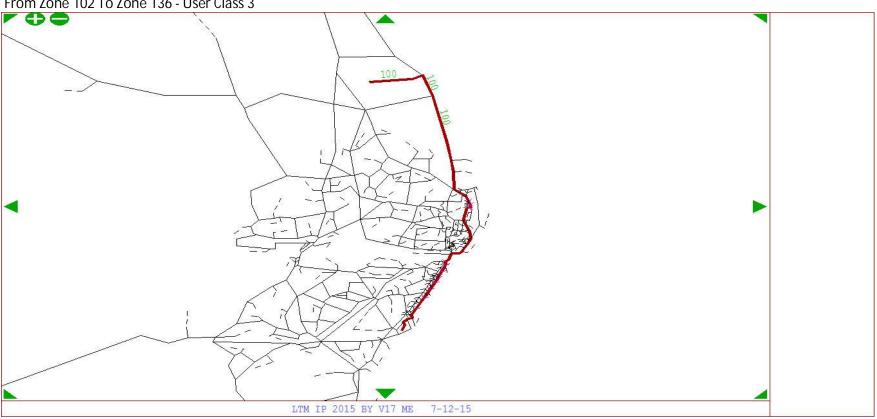



From Zone 102 To Zone 131 - User Class 4

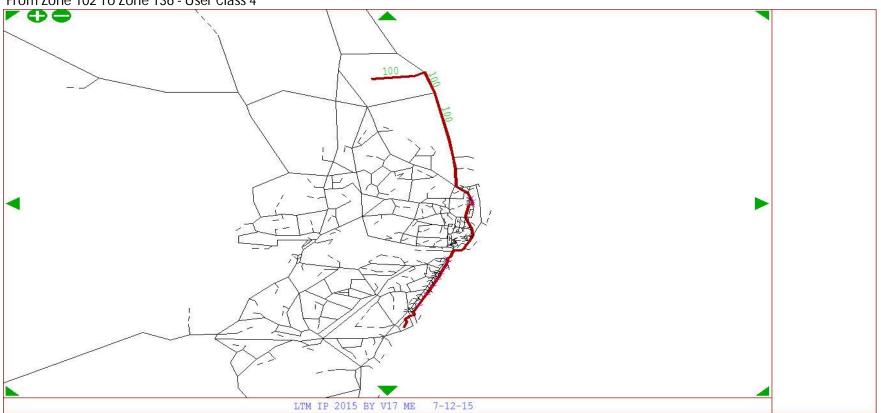



From Zone 102 To Zone 131 - User Class 5

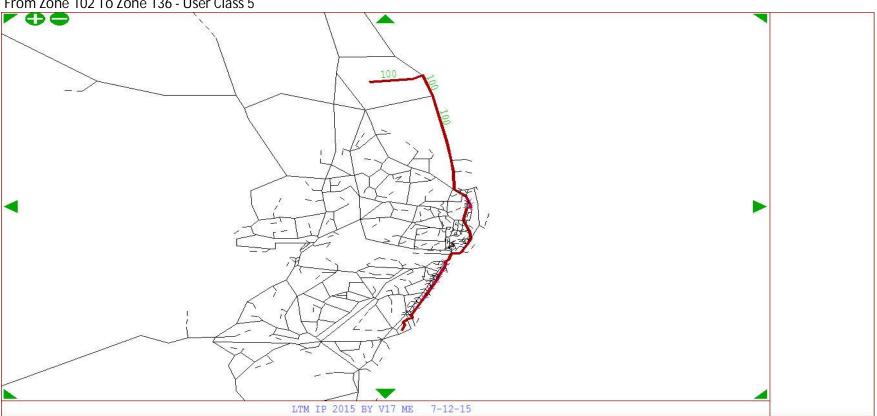


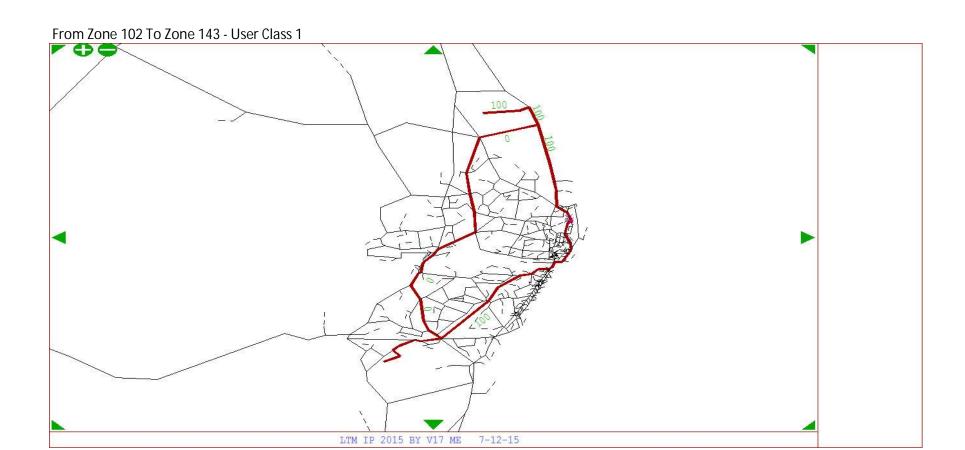

From Zone 102 To Zone 136 - User Class 1




From Zone 102 To Zone 136 - User Class 2



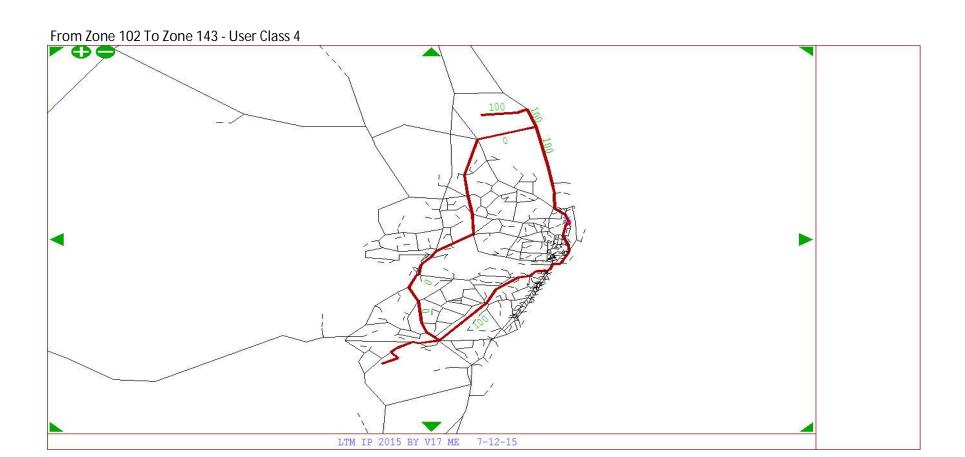

From Zone 102 To Zone 136 - User Class 3





From Zone 102 To Zone 136 - User Class 4




From Zone 102 To Zone 136 - User Class 5





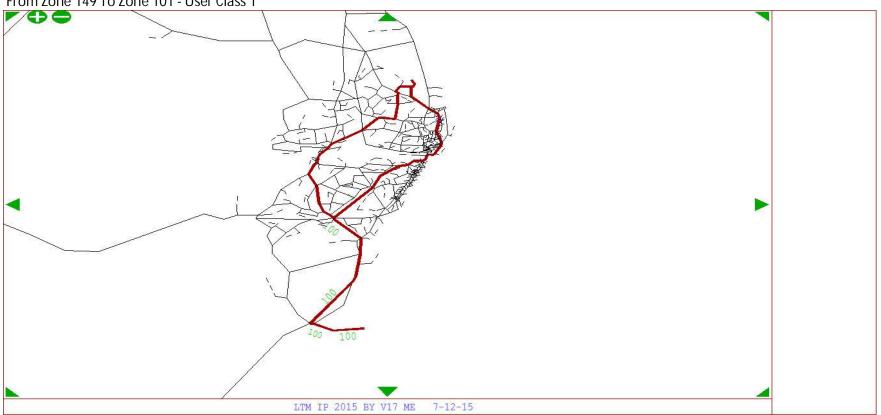


From Zone 102 To Zone 143 - User Class 3

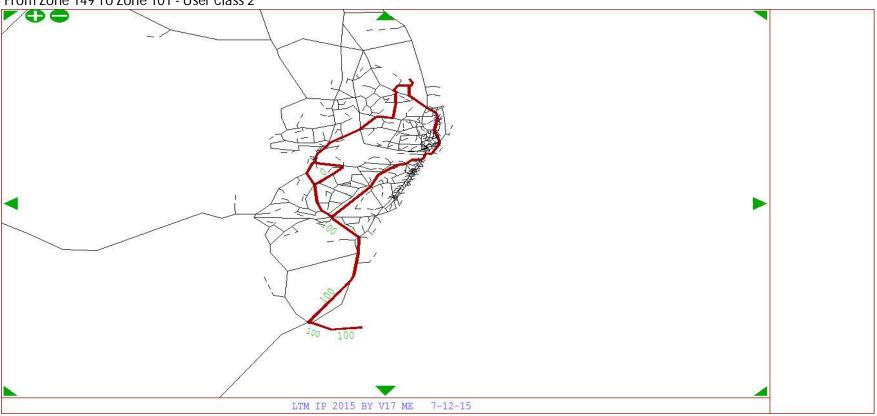


From Zone 102 To Zone 143 - User Class 5

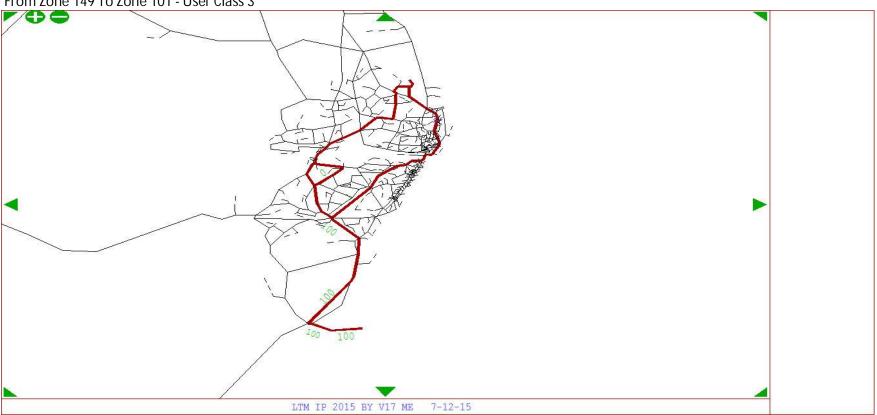
From Zone 102 To Zone 149 - User Class 1 LTM IP 2015 BY V17 ME 7-12-15


From Zone 102 To Zone 149 - User Class 2

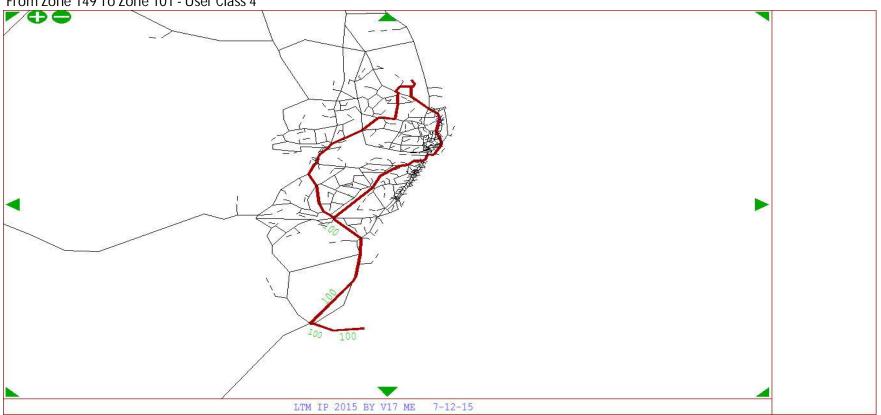
From Zone 102 To Zone 149 - User Class 3


From Zone 102 To Zone 149 - User Class 4 LTM IP 2015 BY V17 ME 7-12-15

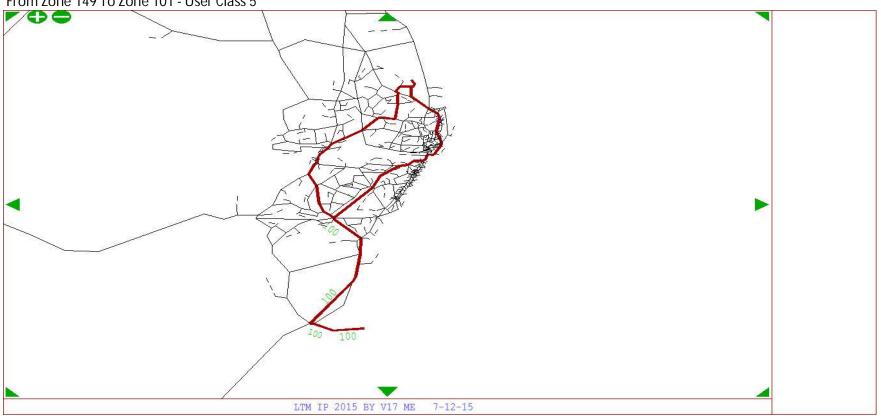
From Zone 102 To Zone 149 - User Class 5


From Zone 149 To Zone 101 - User Class 1




From Zone 149 To Zone 101 - User Class 2




From Zone 149 To Zone 101 - User Class 3



From Zone 149 To Zone 101 - User Class 4

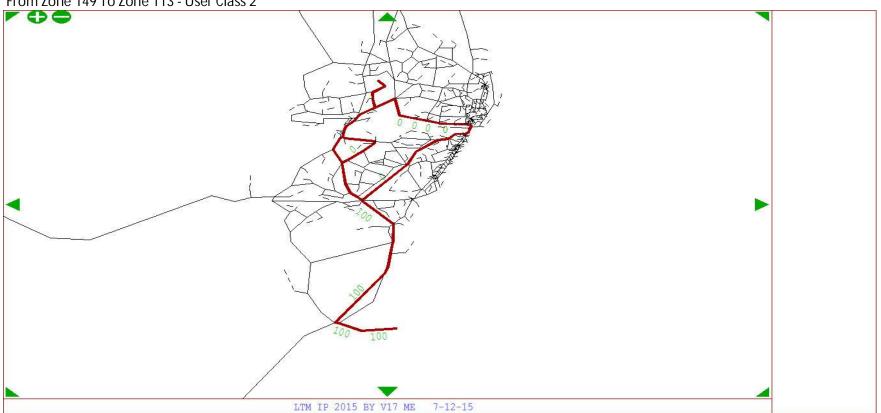


From Zone 149 To Zone 101 - User Class 5

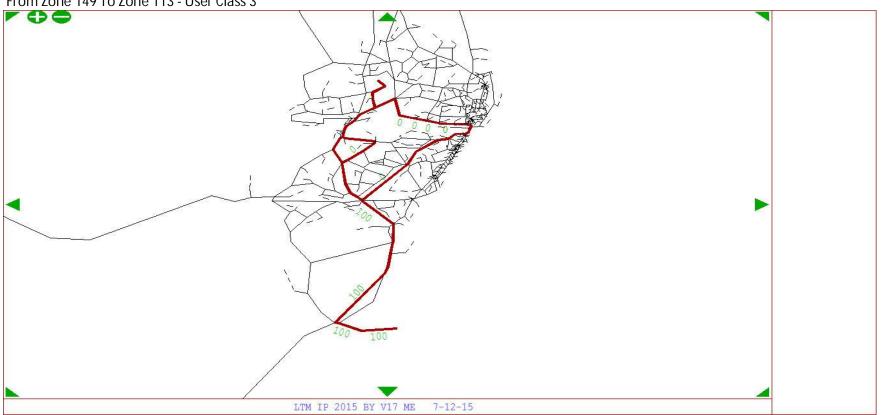


From Zone 149 To Zone 104 - User Class 1 LTM IP 2015 BY V17 ME 7-12-15

From Zone 149 To Zone 104 - User Class 2 LTM IP 2015 BY V17 ME 7-12-15

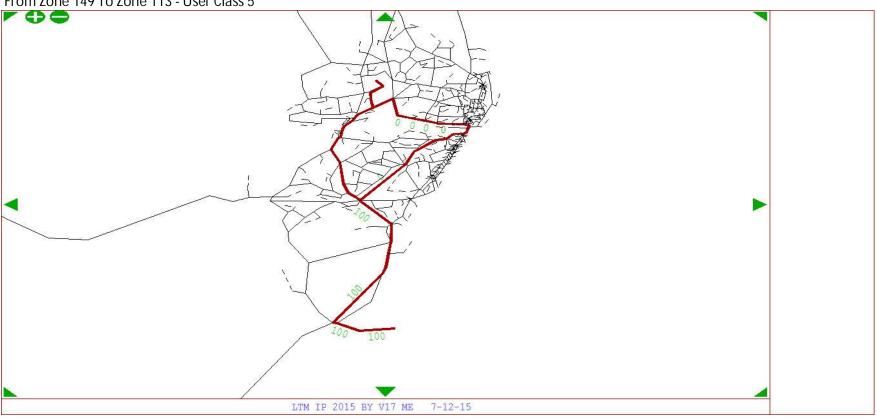

From Zone 149 To Zone 104 - User Class 3 LTM IP 2015 BY V17 ME 7-12-15

From Zone 149 To Zone 104 - User Class 4 LTM IP 2015 BY V17 ME 7-12-15

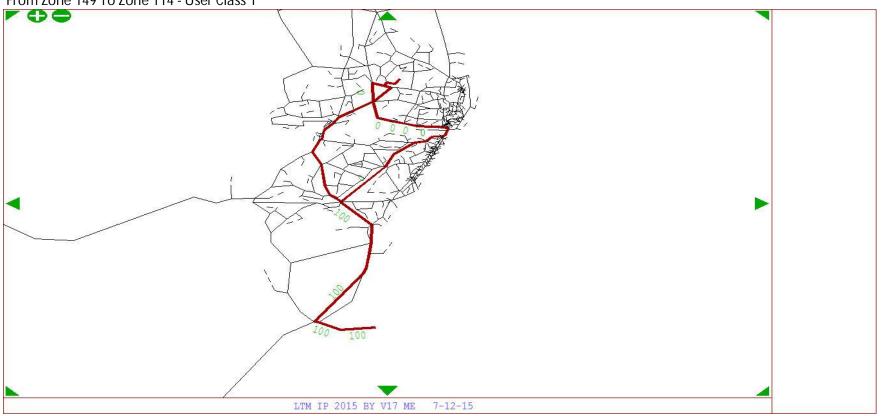

From Zone 149 To Zone 104 - User Class 5

From Zone 149 To Zone 113 - User Class 1

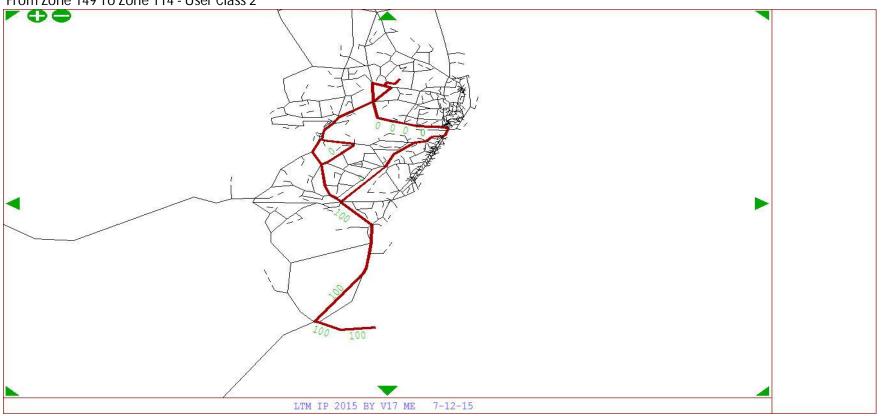
From Zone 149 To Zone 113 - User Class 2



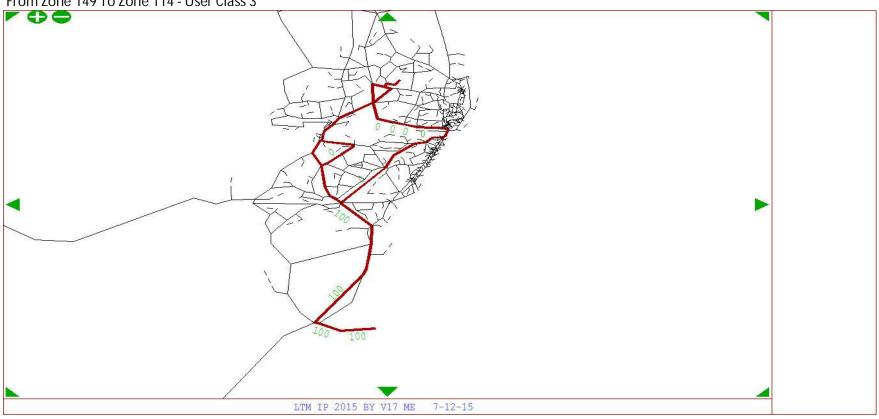

From Zone 149 To Zone 113 - User Class 3



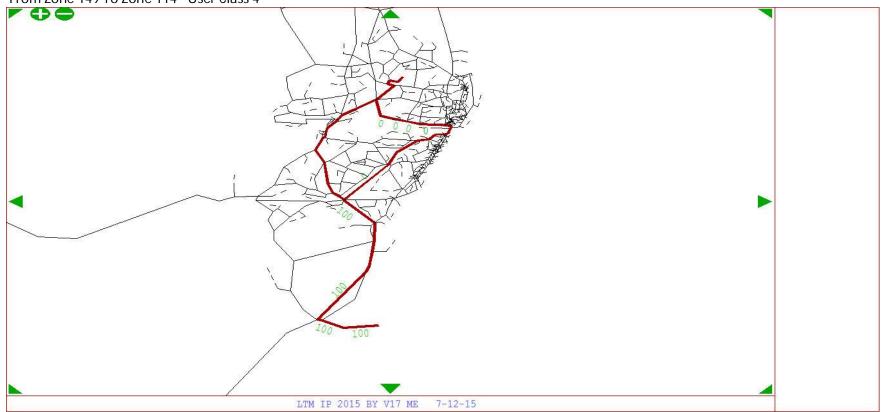

From Zone 149 To Zone 113 - User Class 4


From Zone 149 To Zone 113 - User Class 5

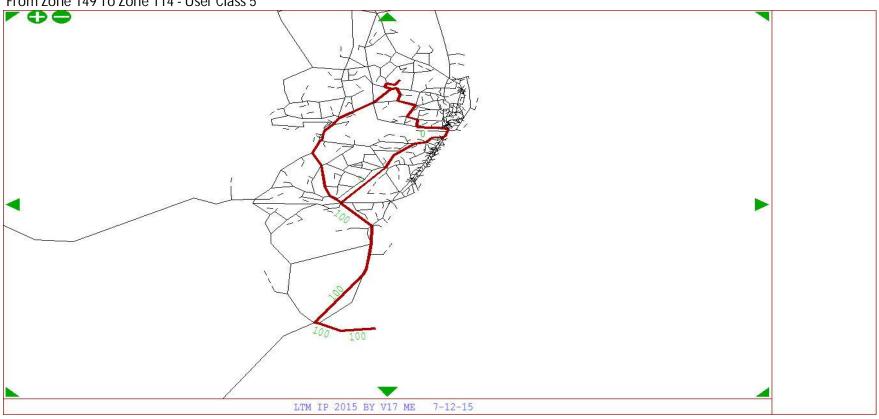



From Zone 149 To Zone 114 - User Class 1




From Zone 149 To Zone 114 - User Class 2




From Zone 149 To Zone 114 - User Class 3

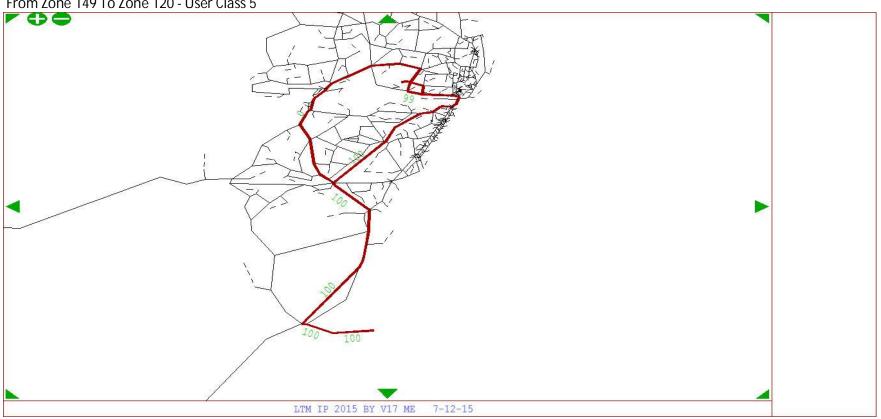


From Zone 149 To Zone 114 - User Class 4

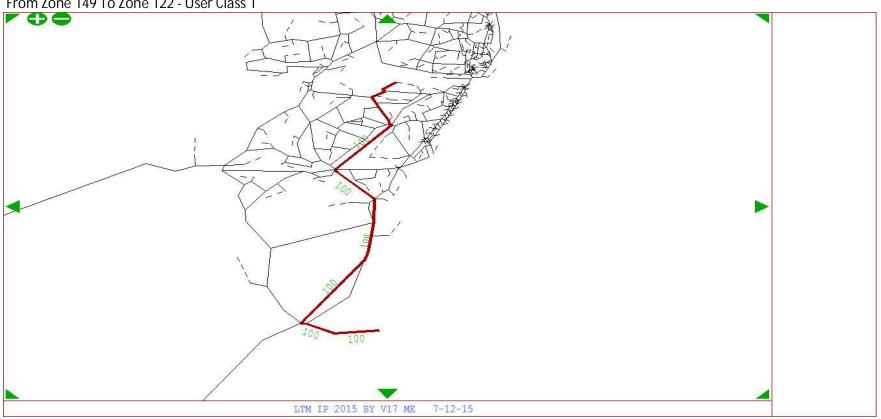


From Zone 149 To Zone 114 - User Class 5

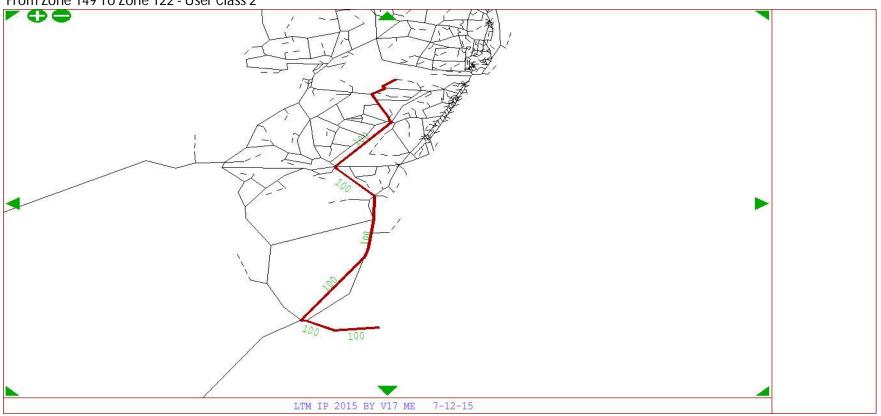



From Zone 149 To Zone 120 - User Class 1

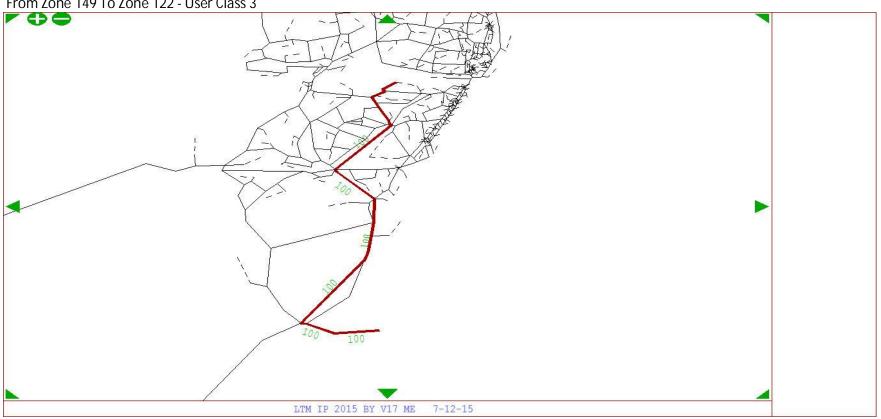
From Zone 149 To Zone 120 - User Class 2


From Zone 149 To Zone 120 - User Class 3

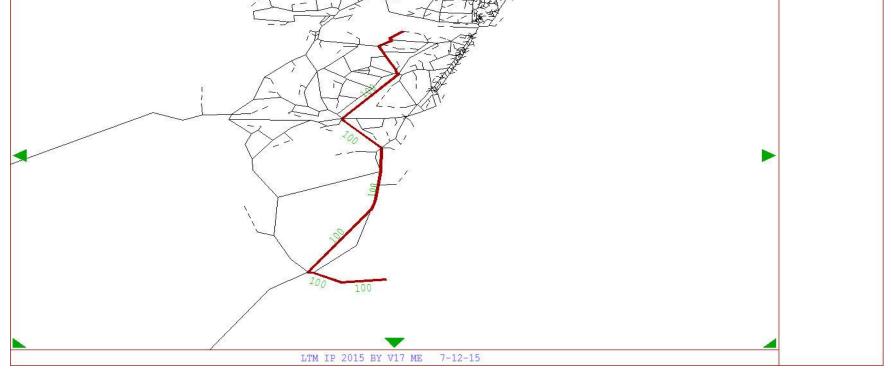
From Zone 149 To Zone 120 - User Class 4


From Zone 149 To Zone 120 - User Class 5

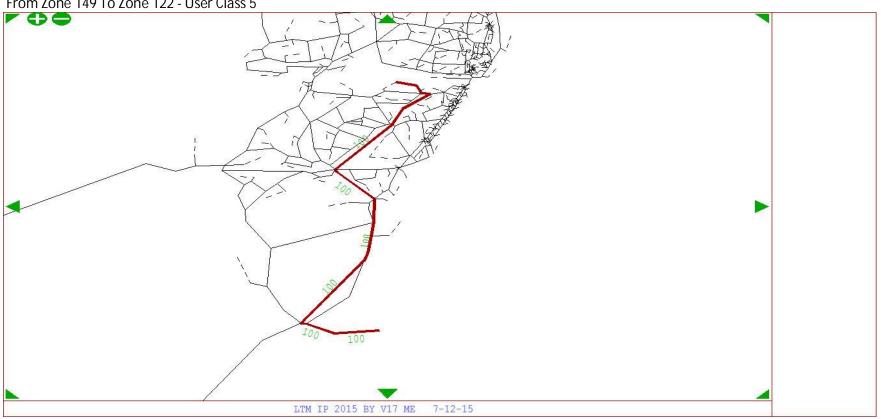



From Zone 149 To Zone 122 - User Class 1




From Zone 149 To Zone 122 - User Class 2




From Zone 149 To Zone 122 - User Class 3



From Zone 149 To Zone 122 - User Class 4

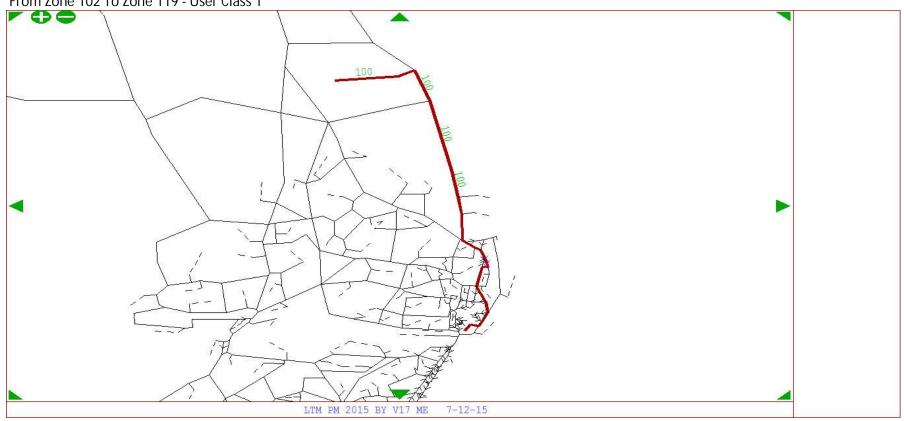


From Zone 149 To Zone 122 - User Class 5



From Zone 149 To Zone 128 - User Class 1 LTM IP 2015 BY V17 ME 7-12-15

From Zone 149 To Zone 128 - User Class 2 

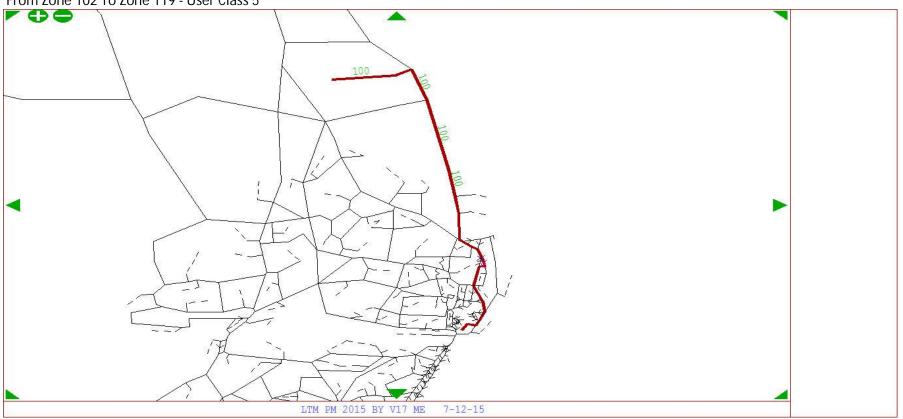

From Zone 149 To Zone 128 - User Class 3

From Zone 149 To Zone 128 - User Class 4 LTM IP 2015 BY V17 ME 7-12-15

From Zone 149 To Zone 128 - User Class 5

## Lowestoft: OD Tree Plots - PM Peak

From Zone 102 To Zone 119 - User Class 1




From Zone 102 To Zone 119 - User Class 2

From Zone 102 To Zone 119 - User Class 3

From Zone 102 To Zone 119 - User Class 4

From Zone 102 To Zone 119 - User Class 5



From Zone 102 To Zone 122 - User Class 1

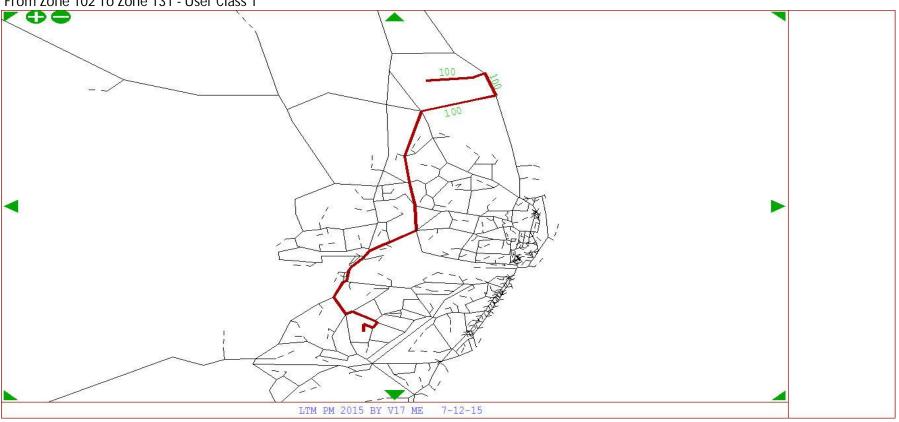
From Zone 102 To Zone 122 - User Class 2

From Zone 102 To Zone 122 - User Class 3

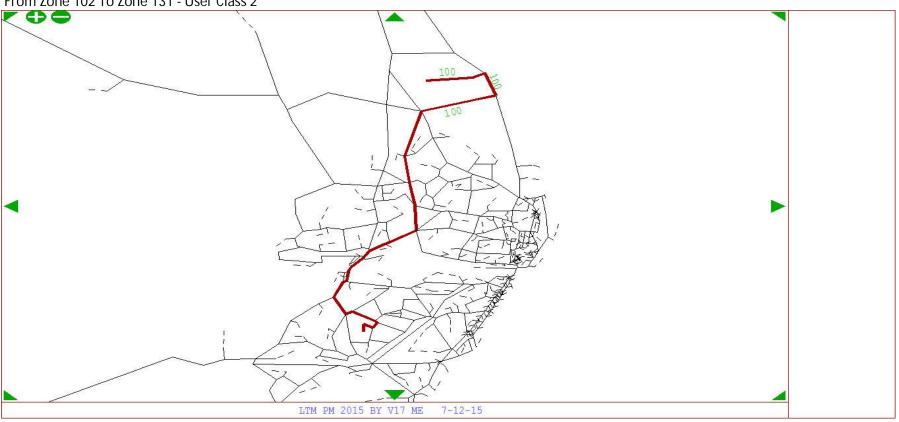
From Zone 102 To Zone 122 - User Class 4

From Zone 102 To Zone 122 - User Class 5

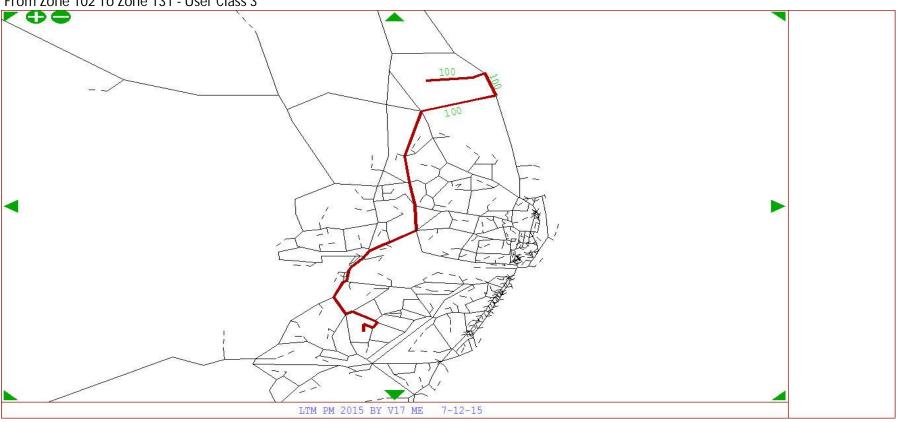
From Zone 130 - User Class 1


From Zone 102 To Zone 130 - User Class 2

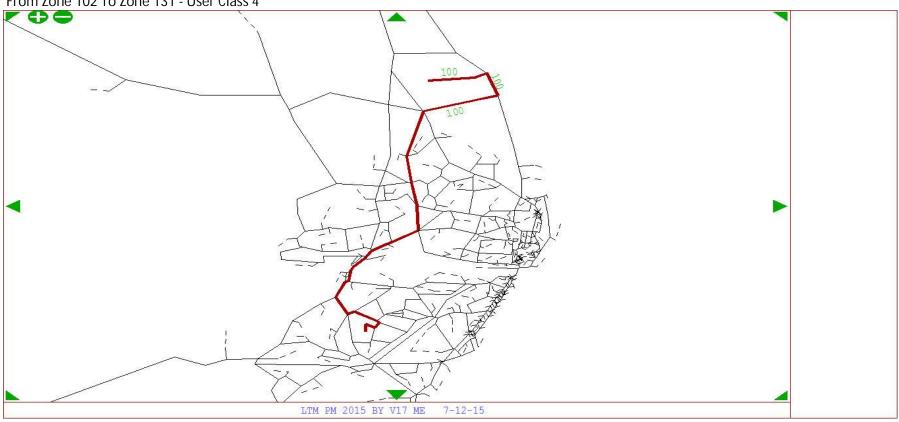
From Zone 102 To Zone 130 - User Class 3


From Zone 102 To Zone 130 - User Class 4

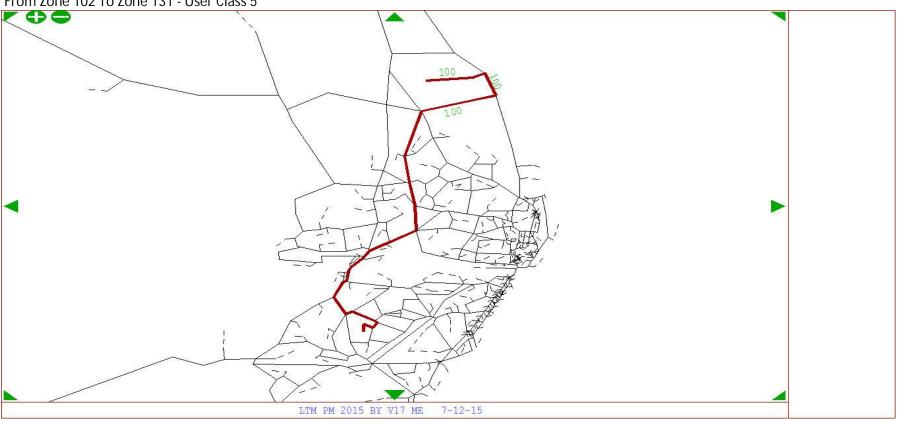
From Zone 102 To Zone 130 - User Class 5


From Zone 102 To Zone 131 - User Class 1

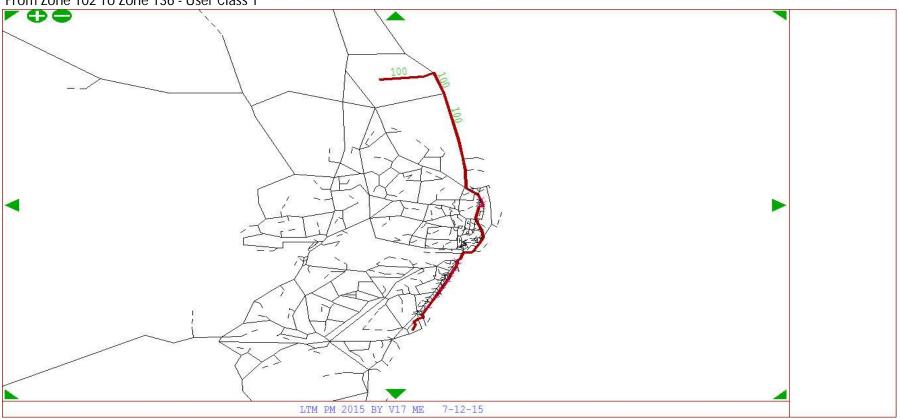



From Zone 102 To Zone 131 - User Class 2

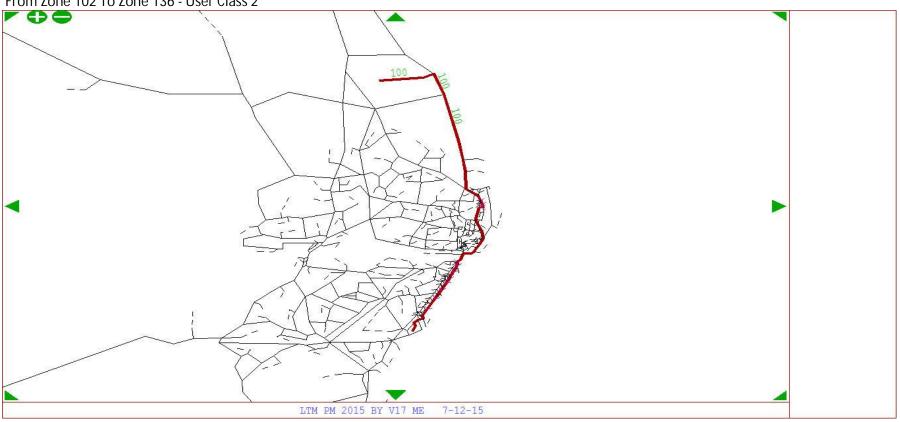



From Zone 102 To Zone 131 - User Class 3

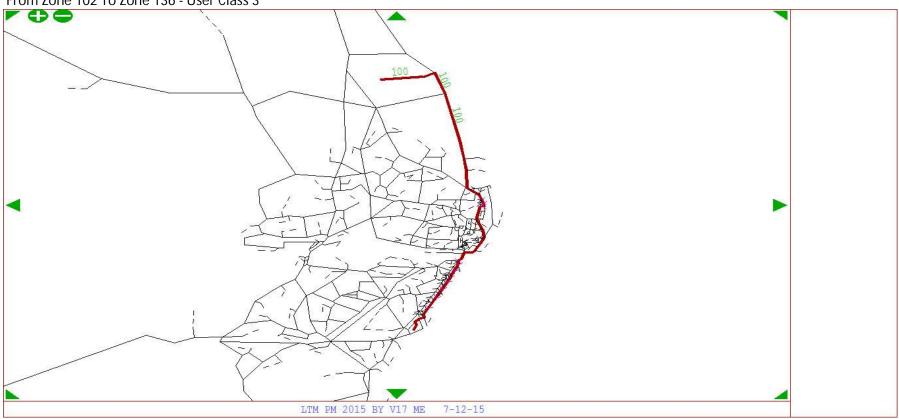



From Zone 102 To Zone 131 - User Class 4

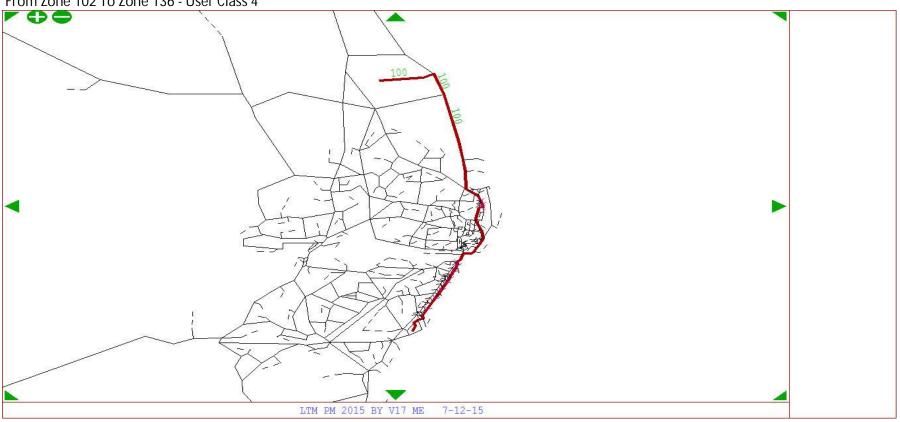



From Zone 102 To Zone 131 - User Class 5

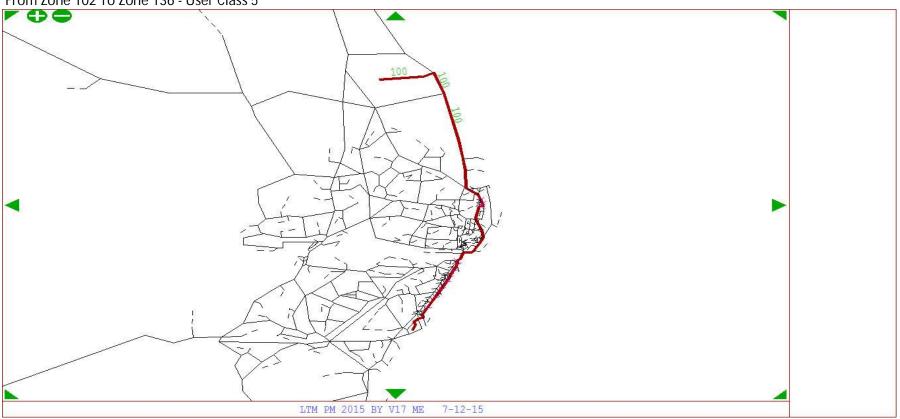


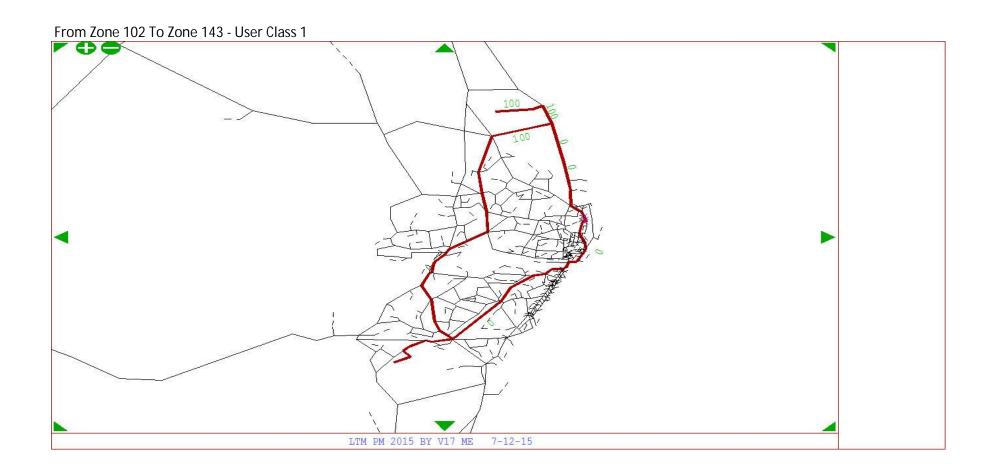

From Zone 102 To Zone 136 - User Class 1

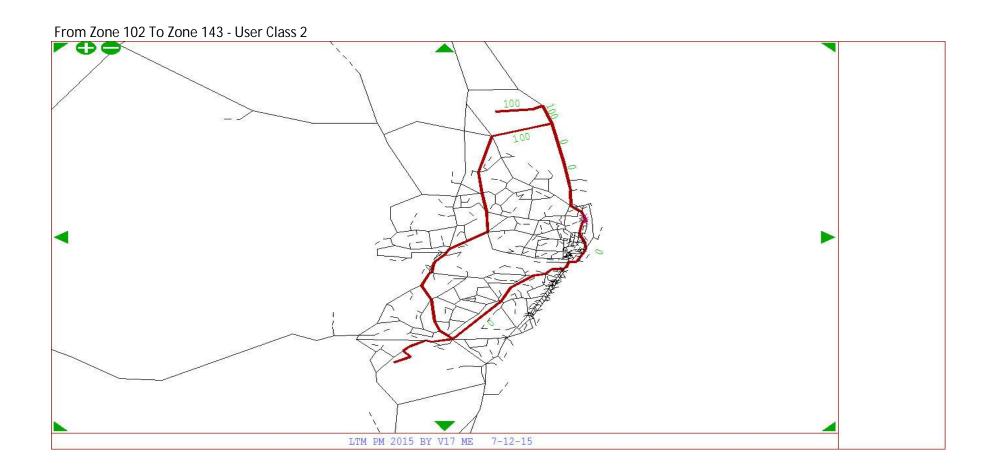


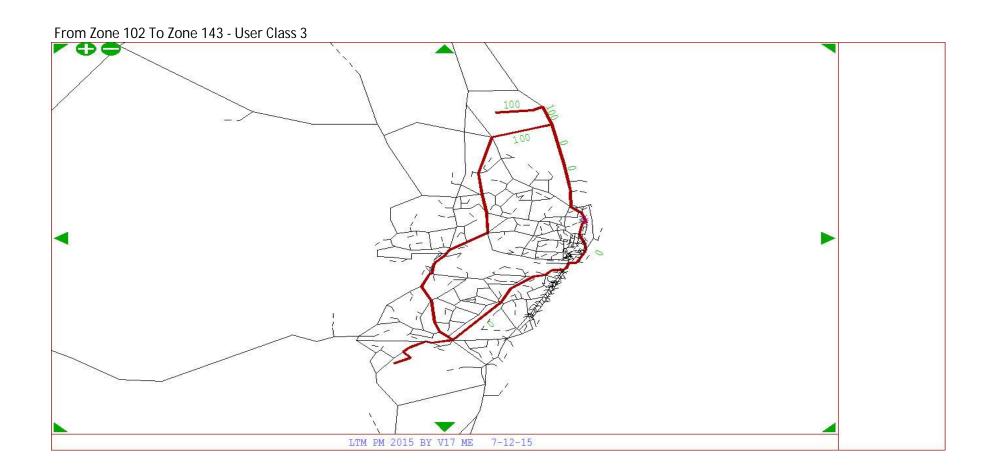

From Zone 102 To Zone 136 - User Class 2

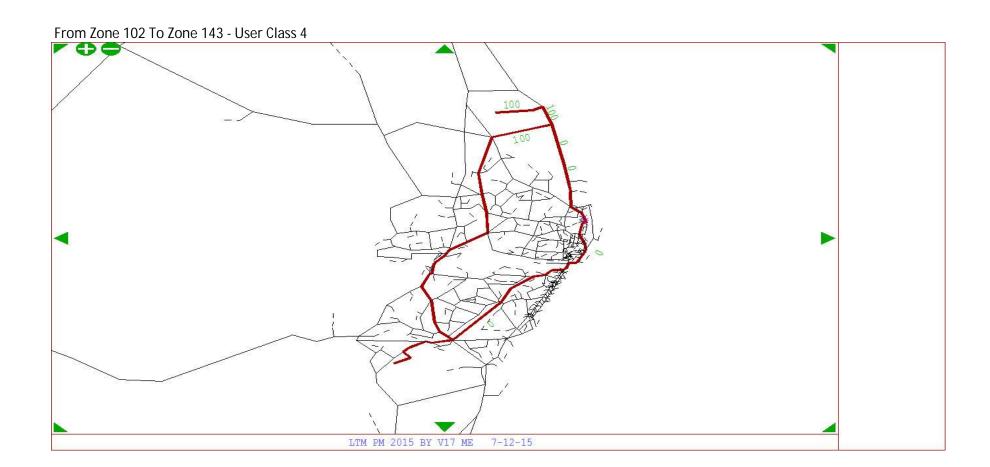



From Zone 102 To Zone 136 - User Class 3





From Zone 102 To Zone 136 - User Class 4





From Zone 102 To Zone 136 - User Class 5











From Zone 102 To Zone 143 - User Class 5 LTM PM 2015 BY V17 ME

From Zone 102 To Zone 149 - User Class 1 

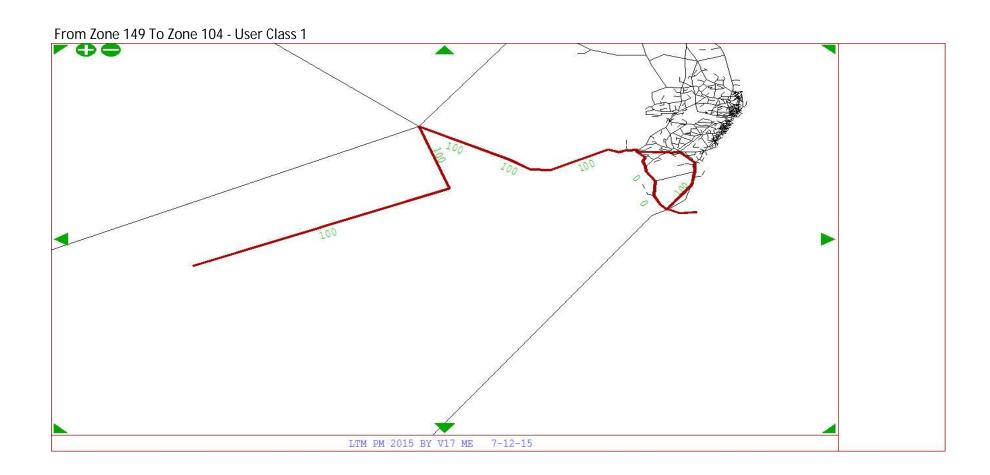
LTM PM 2015 BY V17 ME 7-12-15

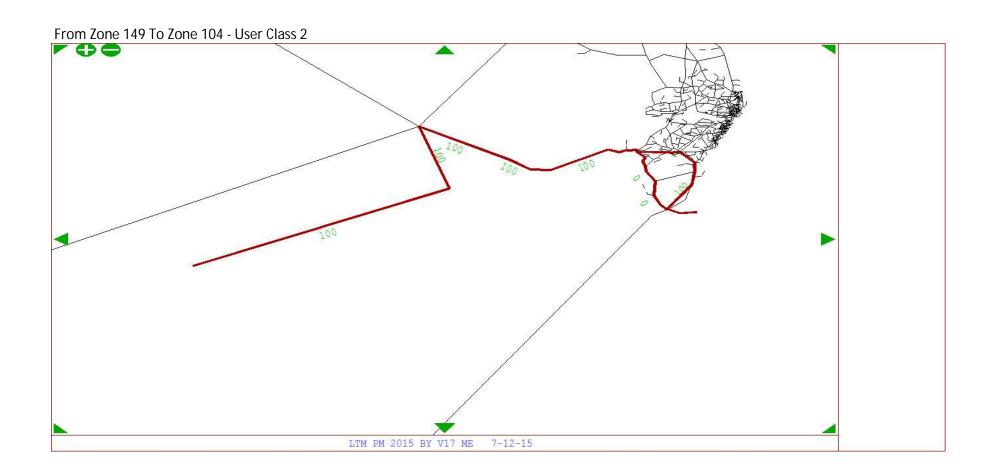
From Zone 102 To Zone 149 - User Class 2 LTM PM 2015 BY V17 ME 7-12-15

From Zone 102 To Zone 149 - User Class 3 LTM PM 2015 BY V17 ME 7-12-15

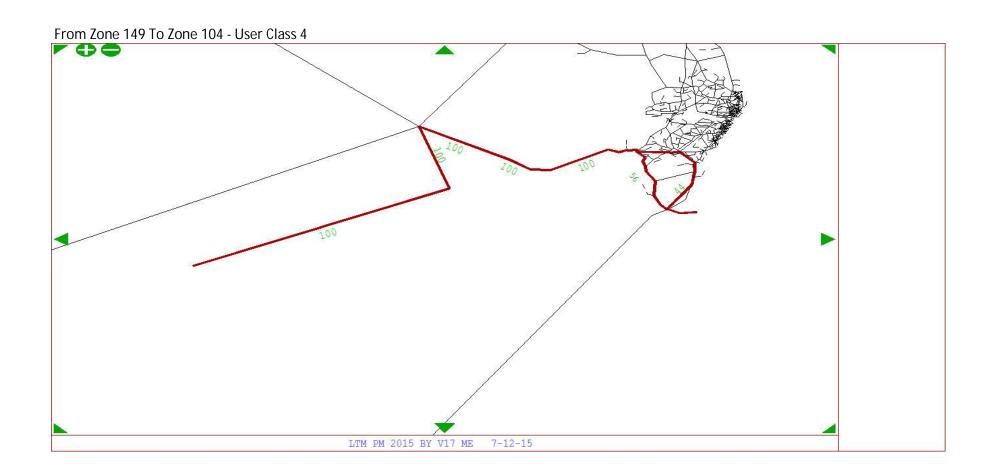
From Zone 102 To Zone 149 - User Class 4 LTM PM 2015 BY V17 ME 7-12-15

From Zone 102 To Zone 149 - User Class 5 


From Zone 149 To Zone 101 - User Class 1

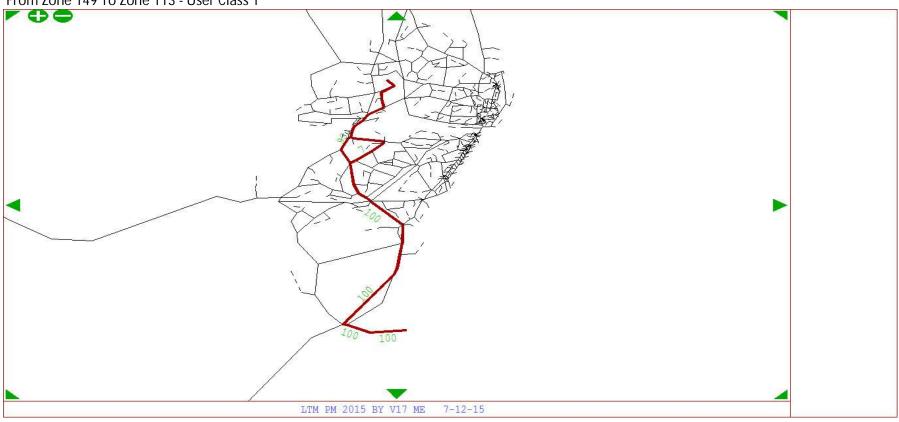

From Zone 149 To Zone 101 - User Class 2

From Zone 149 To Zone 101 - User Class 3

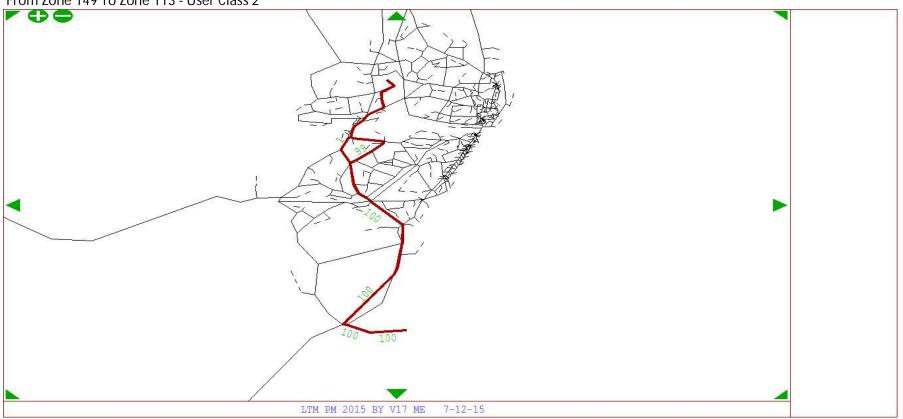

From Zone 149 To Zone 101 - User Class 4

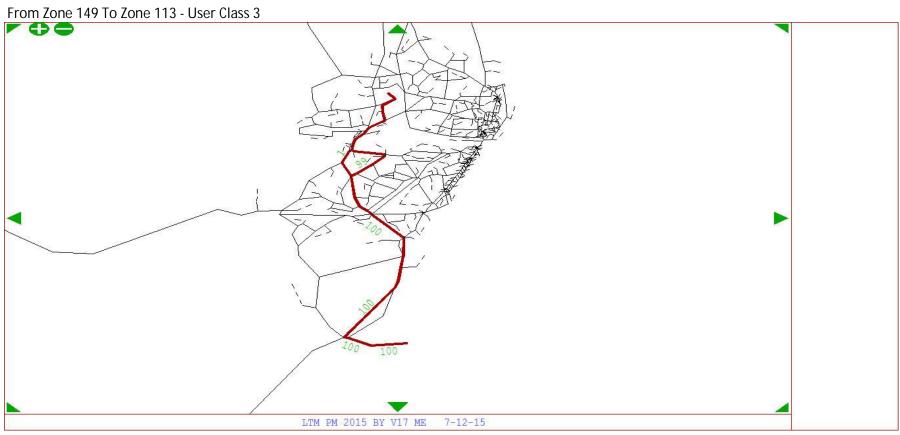
From Zone 149 To Zone 101 - User Class 5



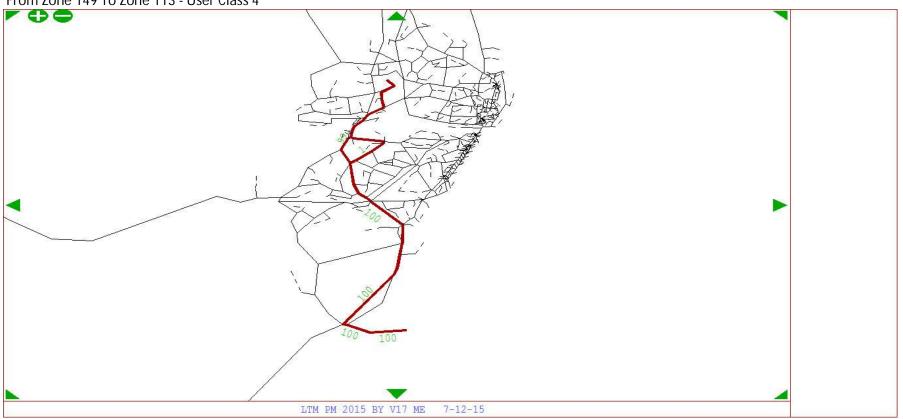


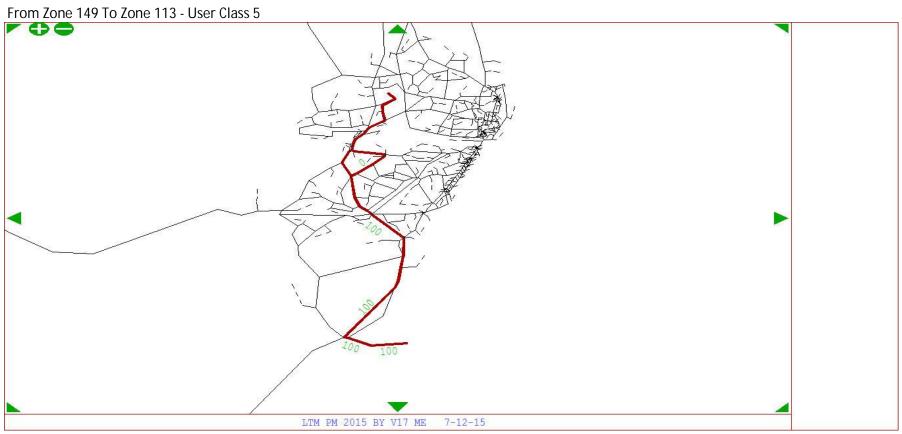

From Zone 149 To Zone 104 - User Class 3 LTM PM 2015 BY V17 ME





From Zone 149 To Zone 104 - User Class 5 LTM PM 2015 BY V17 ME

From Zone 149 To Zone 113 - User Class 1





From Zone 149 To Zone 113 - User Class 2





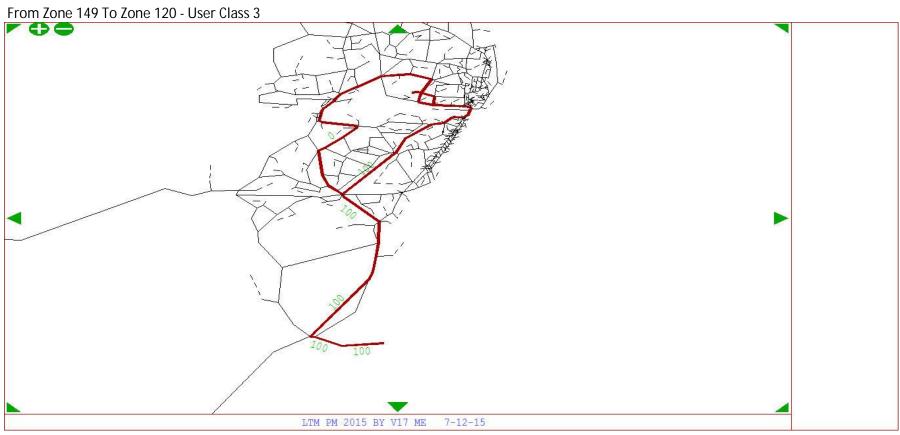
From Zone 149 To Zone 113 - User Class 4





From Zone 149 To Zone 114 - User Class 1

From Zone 149 To Zone 114 - User Class 2 LTM PM 2015 BY V17 ME 7-12-15


From Zone 149 To Zone 114 - User Class 3

From Zone 149 To Zone 114 - User Class 4 LTM PM 2015 BY V17 ME 7-12-15

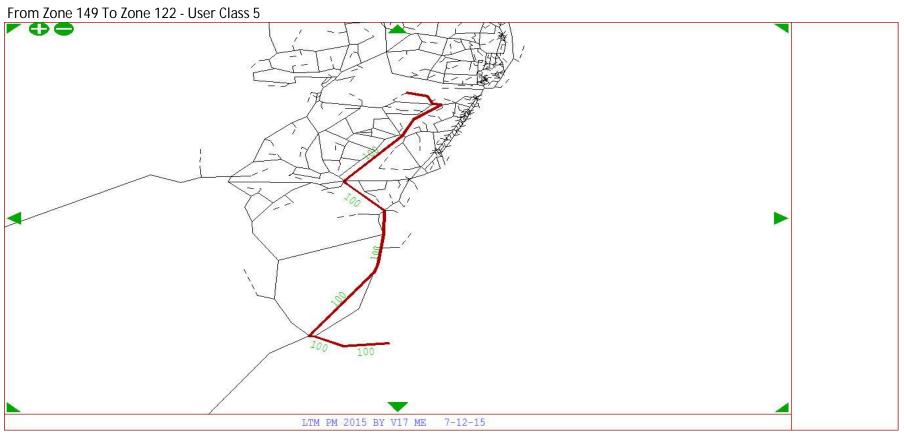
From Zone 149 To Zone 114 - User Class 5

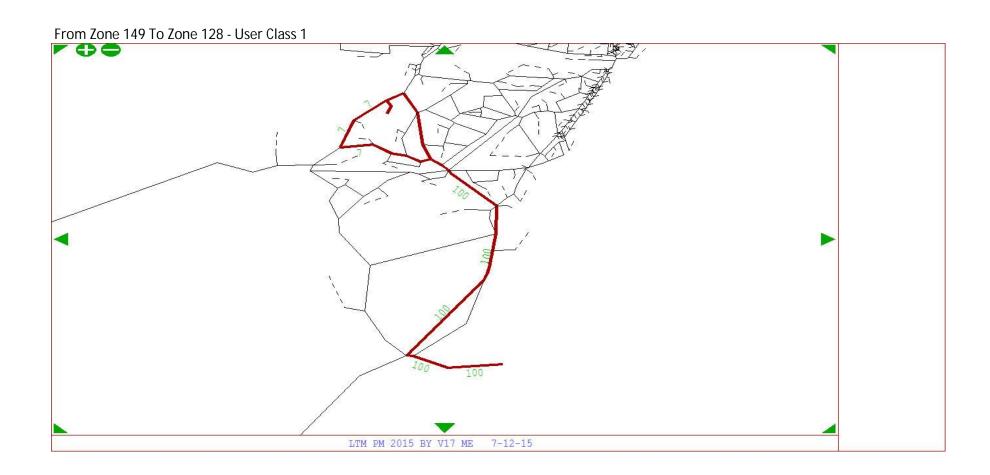
From Zone 149 To Zone 120 - User Class 1

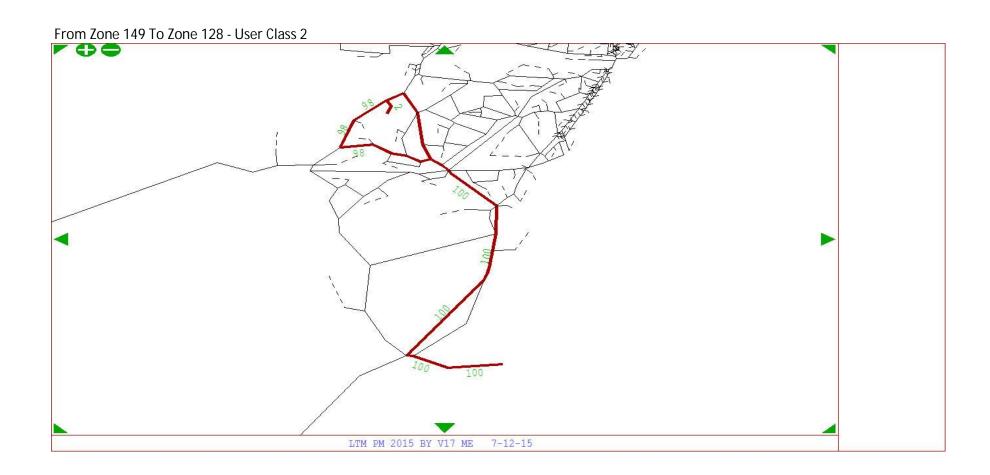
From Zone 149 To Zone 120 - User Class 2



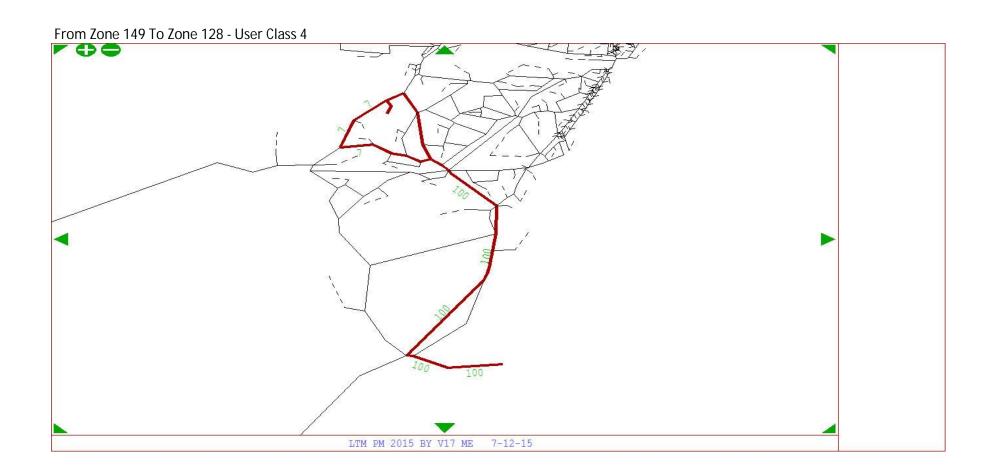
From Zone 149 To Zone 120 - User Class 4





From Zone 149 To Zone 122 - User Class 1


From Zone 149 To Zone 122 - User Class 2

From Zone 149 To Zone 122 - User Class 3


From Zone 149 To Zone 122 - User Class 4







From Zone 149 To Zone 128 - User Class 3 LTM PM 2015 BY V17 ME 7-12-15



From Zone 149 To Zone 128 - User Class 5 LTM PM 2015 BY V17 ME 7-12-15

# Appendix D

**POST ME SCREENLINE PERFORMANCE** 

Index

| ID | Name                 | Link ID | Status                     | Site Location                      | Direction    | A-Node       | B-Node          | AM   | Interp | PM   |
|----|----------------------|---------|----------------------------|------------------------------------|--------------|--------------|-----------------|------|--------|------|
|    |                      | 55      | Calibration                | B1385 Corton Road                  | NB           | 9460         | 9480            | Peak | eak    | Peak |
| 1  | Screenline<br>1 - NB | 57      | Calibration                | A12 Yarmouth Road                  | NB           | 10257        | 6250            |      |        |      |
|    | 1-140                | 59      | Calibration                | B1375 Parkhill<br>B1074 Bluderston | NB           | 10001        | 8070            |      |        |      |
|    |                      | 61      | Calibration                | Road                               | NB           | 10025        | 20026           |      |        |      |
|    |                      |         |                            | TOTAL                              |              | Cali         |                 | Yes  | Yes    | Yes  |
|    | Screenline           | 56      | Calibration                | B1385 Corton Road                  | SB           | 9480         | 9460            |      |        |      |
| 2  | 1 - SB               | 58      | Calibration                | A12 Yarmouth Road                  | SB           | 6250         | 10257           |      |        |      |
|    |                      | 60      | Calibration                | B1375 Parkhill<br>B1074 Bluderston | SB           | 8070         | 10001           |      |        |      |
|    |                      | 62      | Calibration                | Road                               | SB           | 20026        | 10025           |      |        |      |
|    |                      |         |                            | TOTAL                              |              | Cali         |                 | Yes  | Yes    | Yes  |
|    | Screenline           | 49      | Calibration                | B1375 Gorleston Road               | NB           | 8030         | 8040            |      |        |      |
| 3  | 2 - NB               | 51      | Calibration                | A1117 Millennium Way               | NB           | 7070         | 7080            |      |        |      |
|    |                      |         | •                          | TOTAL                              |              | Cali         | oration         | Yes  | Yes    | Yes  |
|    |                      | 50      | Calibration                | B1375 Gorleston Road               | SB           | 8040         | 8030            |      |        |      |
| 4  | Screenline<br>2 - SB | 52      | Calibration                | A1117 Millennium Way               | SB           | 7080         | 7070            |      |        |      |
|    |                      |         |                            | ·                                  |              |              |                 |      |        |      |
|    |                      |         |                            | TOTAL                              |              |              | oration         | Yes  | Yes    | Yes  |
| 5  | Screenline           | 41      | Calibration                | Peto Way<br>A1117 Normanston       | NB           | 10190        | 7060            |      |        |      |
| 3  | 3 - NB               | 43      | Calibration                | Drive                              | NEB          | 7050         | 7060            |      |        |      |
|    |                      |         |                            | TOTAL                              |              | Cali         |                 | Yes  | Yes    | Yes  |
|    | Screenline           | 42      | Calibration                | Peto Way                           | SB           | 7060         | 10190           |      |        |      |
| 6  | 3 - SB               | 44      | Calibration                | A1117 Normanston<br>Drive          | SWB          | 7060         | 7050            |      |        |      |
|    |                      |         |                            | TOTAL                              |              | Cali         | oration         | Yes  | Yes    | Yes  |
|    |                      | 29      | Calibration                | Katwijk Way                        | NB           | 6040         | 10136           |      |        |      |
| 7  | Screenline<br>4 - NB | 31      | Calibration                | A12 Battery Green                  | NB           | 6160         | 6150            |      |        |      |
|    |                      |         |                            | Road<br>TOTAL                      |              |              | oration         | Yes  | Yes    |      |
|    |                      |         | 0.11                       |                                    | 0.0          |              |                 | Tes  | res    | Yes  |
| 8  | Screenline           | 30      | Calibration                | Katwijk Way<br>A12 Battery Green   | SB           | 10136        | 6040            |      |        |      |
|    | 4 - SB               | 32      | Calibration                | Road                               | SB           | 6150         | 6160            |      |        |      |
|    |                      |         |                            | TOTAL                              |              | Cali         |                 | Yes  | Yes    | Yes  |
| 9  | Screenline<br>5 - FR | 22      | Calibration                | Kirkley Run                        | SEB          | 5270         | 10103           |      |        |      |
|    | 5 - EB               | 23      | Calibration                | A146 Waveney Drive                 | EB           | 10088        | 4010<br>oration | Yes  | Yes    | Yes  |
|    | Screenline           | 21      | Calibration                | Kirkley Run                        | NWB          | 10103        | 5270            | res  | res    | res  |
| 10 | 5 - WB               | 21      | Calibration                | A146 Waveney Drive                 | WB           | 4010         | 10088           |      |        |      |
|    |                      |         |                            | TOTAL                              |              | Cali         | oration         | Yes  | Yes    | Yes  |
|    |                      | 37      | Calibration                | Denmark Road                       | EB           | 7200         | 10139           |      |        |      |
|    | Screenline           | 45      | Calibration                | A1144 Normanston                   | EB           | 9240         | 9130            |      |        |      |
| 11 | 6 - EB               | 47      | Calibration                | Drive<br>Oulton Road               | EB           | 9270         | 10010           |      |        |      |
|    |                      | 54      | Calibration                | A12 Yarmouth Road                  | SEB          | 10248        | 10242           |      |        |      |
|    |                      |         |                            | TOTAL                              |              | Cali         |                 | Yes  | Yes    | Yes  |
|    |                      | 38      | Calibration                | Denmark Road                       | WB           | 10139        | 7200            |      |        |      |
| 12 | Screenline           | 46      | Calibration                | A1144 Normanston<br>Drive          | WB           | 9130         | 9240            |      |        |      |
|    | 6 - WB               | 48      | Calibration                | Oulton Road                        | WB           | 10010        | 9270            |      |        |      |
|    |                      | 53      | Calibration                | A12 Yarmouth Road                  | NWB          | 10242        | 10248           |      | ļ      |      |
|    |                      |         |                            | TOTAL                              |              | Cali<br>9600 | oration         | Yes  | Yes    | Yes  |
|    | Screenline<br>7 - EB | 5<br>7  | Calibration<br>Calibration |                                    |              |              | 5010<br>4513    |      |        |      |
|    |                      |         | Janoranon                  | TOTAL                              | 4514<br>Cali | oration      | Yes             | Yes  | Yes    |      |
|    | Screenline           | 6       | Calibration                | 5010                               | 9600         |              |                 |      |        |      |
|    | 7 - WB               | 8       | Calibration                | Gisleham Road<br>A146 Beccles Road | SB<br>WB     | 4513         | 4514            |      |        |      |
|    |                      |         |                            | TOTAL                              |              | Cali         |                 | Yes  | Yes    | Yes  |
|    |                      |         |                            |                                    |              |              |                 |      |        |      |

|             |       | Flow < 5% | Calib | ration | Vali | dation |
|-------------|-------|-----------|-------|--------|------|--------|
| Screen      | lines | All       | 14    | 88%    | 1    | 25%    |
| Calibration | 16    | Car       | 14    | 88%    | 2    | 50%    |
| Validation  |       | LGV       | 13    | 81%    | 0    | 0%     |
|             |       |           |       |        |      | 0.000  |

| GEH < 4 | Calib | ration | Vali | dation |
|---------|-------|--------|------|--------|
| All     | 16    | 100%   | 4    | 100%   |
| Car     |       | 100%   |      | 75%    |
| LGV     |       | 94%    |      | 50%    |
| HGV     |       | 100%   |      | 100%   |

|            |            |                    |                | AM Peak    |            |                | Peak           |            |            |              |                |          |          |                   |                |  |
|------------|------------|--------------------|----------------|------------|------------|----------------|----------------|------------|------------|--------------|----------------|----------|----------|-------------------|----------------|--|
|            | ,          | All                |                |            | С          | ar             |                |            | LC         | 3V           |                |          | Н        | GV                |                |  |
| Observed   | Modelled   | Difference         | GEH            | Observed   | Modelled   | Difference     | GEH            | Observed   | Modelled   | Difference   | GEH            | Observed | Modelled | Difference        | GEH            |  |
| 96<br>567  | 97<br>566  | 1%<br>0%           | 0.089<br>0.047 | 81<br>456  | 82<br>456  | -17%<br>-24%   | 0.111<br>0.012 | 14<br>85   | 14<br>84   | -1%<br>-1%   | 0.033<br>0.082 | 1<br>27  | 1<br>26  | 0%<br>-2%         | 0.000<br>0.122 |  |
| 461        | 434        | -6%                | 1.284          | 384        | 378        | -24%           | 0.012          | 64         | 43         | -33%         | 2.871          | 13       | 13       | -1%               | 0.122          |  |
| 179        | 180        | 0%                 | 0.047          | 108        | 108        | -66%           | 0.048          | 64         | 64         | 0%           | 0.031          | 8        | 8        | -2%               | 0.044          |  |
| 1304       | 1277       | -2%                | 0.746          | 1028       | 1024       | 0%             | 0.133          | 227        | 205        | 10%          | 1.472          | 49       | 48       | 2%                | 0.132          |  |
| 102<br>567 | 101<br>647 | -1%<br>14%         | 0.062<br>3.252 | 81<br>411  | 80<br>490  | -27%<br>-19%   | 0.056<br>3.728 | 20<br>132  | 20<br>133  | 1%<br>1%     | 0.056<br>0.120 | 1<br>24  | 1<br>24  | -27%<br>-2%       | 0.344<br>0.076 |  |
| 251        | 269        | 7%                 | 1.106          | 178        | 196        | -31%           | 1.304          | 65         | 65         | 1%           | 0.041          | 8        | 8        | -4%               | 0.117          |  |
| 113        | 122        | 8%                 | 0.854          | 14         | 23         | -665%          | 2.224          | 94         | 94         | 0%           | 0.000          | 5        | 5        | -5%               | 0.110          |  |
| 1032       | 1139       | 10%                | 3.235          | 683        | 789        | 16%            | 3.906          | 310        | 312        | -1%          | 0.111          | 39       | 38       | 3%                | 0.214          |  |
| 584        | 582        | 0%                 | 0.065          | 455        | 453        | -29%           | 0.101          | 109        | 109        | 0%           | 0.000          | 19       | 20       | 3%                | 0.129          |  |
| 376        | 378        | 1%                 | 0.124          | 296        | 298        | -26%           | 0.093          | 60         | 60         | 1%           | 0.052          | 20       | 20       | 2%                | 0.090          |  |
| 959        | 960        | 0%                 | 0.027          | 752        | 751        | 0%             | 0.020          | 169        | 169        | 0%           | 0.031          | 39       | 40       | -2%               | 0.155          |  |
| 484        | 482        | 0%                 | 0.078          | 377        | 375        | -29%           | 0.125          | 91         | 91         | 0%           | 0.030          | 16       | 16       | 3%                | 0.108          |  |
| 450        | 455        | 1%                 | 0.254          | 375        | 379        | -19%           | 0.206          | 59         | 60         | 2%           | 0.156          | 16       | 16       | 1%                | 0.050          |  |
| 933        | 937        | 0%                 | 0.121          | 752        | 754        | 0%             | 0.057          | 150        | 151        | -1%          | 0.121          | 31       | 32       | -2%               | 0.112          |  |
| 396<br>687 | 386<br>699 | -2%<br>2%          | 0.483<br>0.471 | 272<br>334 | 261<br>343 | -49%<br>-103%  | 0.694<br>0.467 | 116<br>327 | 116<br>329 | 0%<br>1%     | 0.000<br>0.110 | 7<br>25  | 9<br>27  | 25%<br>7%         | 0.624<br>0.352 |  |
| 1082       | 1085       | 0%                 | 0.086          | 607        | 604        | 0%             | 0.111          | 443        | 445        | 0%           | 0.095          | 32       | 36       | -11%              | 0.612          |  |
| 317        | 286        | -10%               | 1.792          | 150        | 150        | -111%          | 0.111          | 153        | 125        | -18%         | 2.375          | 14       | 11       | -11%              | 0.819          |  |
| 506        | 509        | 1%                 | 0.115          | 263        | 265        | -92%           | 0.148          | 221        | 221        | 0%           | 0.013          | 23       | 23       | 2%                | 0.084          |  |
| 824        | 795        | -3%                | 1.002          | 413        | 415        | 1%             | 0.107          | 374        | 346        | 8%           | 1.486          | 36       | 34       | 7%                | 0.419          |  |
| 411        | 364        | -11%               | 2.388          | 261        | 231        | -69%           | 1.902          | 122        | 107        | -12%         | 1.387          | 28       | 26       | -8%               | 0.448          |  |
| 675        | 677        | 0%                 | 0.077          | 289        | 290        | -133%          | 0.042          | 357        | 357        | 0%           | 0.000          | 29       | 30       | 4%                | 0.237          |  |
| 1086       | 1041       | -4%                | 1.380          | 550        | 521        | -5%            | 1.258          | 479        | 464        | 3%           | 0.683          | 57       | 56       | 2%                | 0.139          |  |
| 134        | 123        | -8%                | 0.970          | 87         | 87         | -54%           | 0.054          | 34         | 34         | 0%           | 0.029          | 13       | 2        | -85%              | 4.093          |  |
| 571        | 570        | 0%                 | 0.031          | 337        | 337        | -69%           | 0.000          | 205        | 204        | 0%           | 0.035          | 29       | 29       | -1%               | 0.046          |  |
| 705<br>94  | 693<br>94  | -2%<br>0%          | 0.444          | 424<br>67  | 424<br>67  | 0%<br>-40%     | 0.024          | 239        | 238        | 0%<br>-1%    | 0.043          | 43       | 31       | 27%               | 1.910<br>0.000 |  |
| 94<br>347  | 94<br>344  | -1%                | 0.017          | 212        | 211        | -40%<br>-64%   | 0.041          | 23<br>122  | 120        | -1%<br>-1%   | 0.035          | 13       | 4<br>13  | -3%               | 0.000          |  |
| 440        | 438        | -1%                | 0.114          | 278        | 278        | 0%             | 0.013          | 145        | 143        | 1%           | 0.144          | 17       | 17       | 3%                | 0.107          |  |
| 162<br>151 | 159<br>139 | -2%<br>-8%         | 0.263<br>0.978 | 110<br>68  | 110<br>67  | -47%<br>-123%  | 0.032<br>0.149 | 48<br>72   | 45<br>72   | -7%<br>0%    | 0.464<br>0.013 | 4<br>10  | 4<br>0   | 4%<br>-100%       | 0.084<br>4.570 |  |
| 313        | 298        | -5%                | 0.864          | 179        | 177        | -1%            | 0.117          | 120        | 117        | 3%           | 0.301          | 14       | 4        | 72%               | 3.400          |  |
| 215        | 214        | 0%                 | 0.038          | 138        | 138        | -55%           | 0.000          | 68         | 68         | 0%           | 0.027          | 8        | 8        | -4%               | 0.117          |  |
| 408        | 413        | 1%                 | 0.272          | 225        | 229        | -79%           | 0.249          | 167        | 169        | 1%           | 0.135          | 15       | 15       | 0%                | 0.000          |  |
| 476<br>651 | 377<br>595 | -21%<br>-9%        | 4.789<br>2.248 | 263<br>401 | 263<br>401 | -81%<br>-62%   | 0.007<br>0.017 | 201<br>223 | 103<br>167 | -49%<br>-25% | 7.919<br>4.040 | 12<br>27 | 11<br>27 | -10%<br>0%        | 0.359<br>0.000 |  |
| 1749       | 1599       | -9%                | 3.668          | 1027       | 1031       | 0%             | 0.124          | 659        | 507        | 23%          | 6.313          | 63       | 61       | 2%                | 0.198          |  |
| 304        | 342        | 13%                | 2.133          | 202        | 227        | -38%           | 1.715          | 90         | 103        | 14%          | 1.300          | 12       | 12       | 4%                | 0.130          |  |
| 190        | 190        | 0%                 | 0.018          | 124        | 124        | -53%           | 0.022          | 54         | 54         | 0%           | 0.034          | 12       | 12       | 2%                | 0.073          |  |
| 246<br>460 | 246<br>460 | 0%<br>0%           | 0.028<br>0.005 | 149<br>298 | 149<br>298 | -65%<br>-54%   | 0.009<br>0.013 | 90<br>139  | 90<br>139  | 0%<br>0%     | 0.023<br>0.000 | 8<br>23  | 7<br>23  | - <b>7%</b><br>1% | 0.206<br>0.070 |  |
| 1200       | 1238       | 3%                 | 1.096          | 773        | 798        | 3%             | 0.893          | 373        | 386        | -3%          | 0.654          | 54       | 54       | -1%               | 0.064          |  |
| 21<br>639  | 5<br>639   | - <b>76%</b><br>0% | 4.360<br>0.000 | 6<br>267   | 3<br>267   | -307%<br>-139% | 1.308<br>0.000 | 14<br>312  | 1<br>312   | -93%<br>0%   | 4.663<br>0.000 | 1<br>60  | 1<br>60  | -21%<br>0%        | 0.250<br>0.000 |  |
| 660        | 644        | -2%                | 0.611          | 273        | 270        | -1%            | 0.166          | 326        | 313        | 4%           | 0.705          | 61       | 61       | 0%                | 0.034          |  |
| 17<br>670  | 18<br>670  | 3%<br>0%           | 0.127<br>0.000 | 7<br>185   | 6<br>185   | -159%<br>-262% | 0.467<br>0.000 | 9<br>440   | 9<br>440   | -4%<br>0%    | 0.110<br>0.000 | 1<br>45  | 3<br>45  | 221%<br>0%        | 1.474<br>0.000 |  |
| 687        | 688        | 0%                 | 0.020          | 192        | 191        | -1%            | 0.087          | 440        | 449        | 0%           | 0.016          | 46       | 48       | -4%               | 0.302          |  |
|            |            |                    |                |            |            |                |                |            | 1          |              |                |          | 1        |                   |                |  |

Index

| ID | Namo       | Link ID | Statue      | Sito Location       | Direction | A-Nodo | P Nodo | AM  | Interp | PM  |
|----|------------|---------|-------------|---------------------|-----------|--------|--------|-----|--------|-----|
|    | Screenline | 13      | Calibration | London Road South   | NEB       | 9606   | 1040   |     |        |     |
| 15 | 8 - NB     | 15      | Calibration | A12 Tom Crisp Way   | NEB       | 3000   | 10015  |     |        |     |
|    | 0 - ND     | 17      | Calibration | A1117 Elm Tree Road | NB        | 3030   | 3040   |     |        |     |
|    |            |         |             | TOTAL               |           | Calil  |        | Yes | Yes    | Yes |
|    | Screenline | 14      | Calibration | London Road South   | SWB       | 1040   | 9606   |     |        |     |
| 16 | 8 - SB     | 16      | Calibration | A12 Tom Crisp Way   | SWB       | 10015  | 3000   |     |        |     |
|    | 8 - SB     | 18      | Calibration | A1117 Elm Tree Road | SB        | 3040   | 3030   |     |        |     |
|    |            |         |             | TOTAL               |           | Calil  |        | Yes | Yes    | Yes |
| 19 | Screenline | 81      | Validation  | Saltwater Way       | NB        | 2050   | 2060   |     |        |     |
| 19 | 9 - NB     | 79      | Validation  | A12 Pier Terrace    | NB        | 1260   | 10023  |     |        |     |
|    |            |         |             | TOTAL               |           | Vali   | dation | Yes | Yes    | Yes |
| 20 | Screenline | 82      | Validation  | Saltwater Way       | SB        | 2060   | 2050   |     |        |     |
| 20 | 9 - SB     | 80      | Validation  | A12 Pier Terrace    | SB        | 10023  | 1260   |     |        |     |
|    |            |         |             | TOTAL               |           | Vali   | dation | Yes | Yes    | Yes |
|    | Screenline | 9       | Validation  | A1145 Castleton     | EB        | 5110   | 5060   |     |        |     |
| 21 | 10 - NB    | 11      | Validation  | A12 London Road     | NB        | 5390   | 1000   |     |        |     |
|    | IU - ND    | 19      | Validation  | A146 Beccles Road   | NEB       | 10111  | 10109  |     |        |     |
|    |            |         |             | TOTAL               |           | Vali   | dation | Yes | Yes    | Yes |
|    | Screenline | 10      | Validation  | A1145 Castleton     | WB        | 5060   | 5110   |     |        |     |
| 22 | 10 - SB    | 12      | Validation  | A12 London Road     | SB        | 1000   | 5390   |     |        |     |
|    | 10 - SB    | 20      | Validation  | A146 Beccles Road   | SWB       | 10109  | 10111  |     |        |     |
|    |            |         |             | TOTAL               |           | Vali   | dation | Yes | Yes    | Yes |

|             |    | Flow < 5% | Calib | oration | Valid | dation |
|-------------|----|-----------|-------|---------|-------|--------|
| Screen      |    | All       | 14    | 88%     | 1     | 25%    |
| Calibration | 16 | Car       | 14    | 88%     | 2     | 50%    |
| Validation  |    | LGV       | 13    | 81%     | 0     | 0%     |
|             |    | HGV       | 12    | 75%     | 1     | 25%    |

| GEH < 4 | Calib | ration | Vali | dation |
|---------|-------|--------|------|--------|
| All     |       | 100%   |      | 100%   |
| Car     |       | 100%   |      | 75%    |
| LGV     |       | 94%    |      | 50%    |
| HGV     | 16    | 100%   | 4    | 100%   |

|                   |                   |                    |                         |                   |                   |                        | AM                       | Peak              |                   |                    |                         |                |                |                     |                         |
|-------------------|-------------------|--------------------|-------------------------|-------------------|-------------------|------------------------|--------------------------|-------------------|-------------------|--------------------|-------------------------|----------------|----------------|---------------------|-------------------------|
|                   |                   | All                |                         |                   | C                 | ar                     |                          |                   | LC                | SV .               |                         |                | H              | 3V                  |                         |
| Observed<br>452   | Modelled<br>453   | Difference<br>0%   | 0.035                   | Observed<br>247   | Modelled<br>247   | Difference<br>-83%     | 0,008                    | Observed<br>188   | Modelled<br>188   | Difference<br>0%   | 0.036                   | Observed<br>18 | Modelled<br>18 | Difference<br>2%    | 0.089                   |
| 823<br>310        | 819<br>309        | 0%<br>0%           | 0.143<br>0.043          | 623<br>167        | 619<br>166        | -33%<br>-86%           | 0.147<br>0.039           | 172<br>125        | 172<br>125        | 0%<br>0%           | 0.000<br>0.011          | 28<br>18       | 28<br>18       | -2%<br>-2%          | 0.084<br>0.088          |
| 1585              | 1581              | 0%                 | 0.103                   | 1036              | 1032              | 0%                     | 0.133                    | 484               | 485               | 0%                 | 0.028                   | 64             | 64             | 1%                  | 0.055                   |
| 356<br>381<br>359 | 357<br>381<br>359 | 0%<br>0%<br>0%     | 0.033<br>0.011<br>0.013 | 183<br>247<br>209 | 183<br>247<br>209 | -95%<br>-54%<br>-72%   | 0.009<br>0.021<br>0.000  | 156<br>111<br>134 | 156<br>111<br>134 | 0%<br>0%<br>0%     | 0.040<br>0.021<br>0.022 | 18<br>23<br>16 | 18<br>23<br>16 | 1%<br>-1%<br>0%     | 0.059<br>0.069<br>0.000 |
| 1096              | 1097              | 0%                 | 0.033                   | 639               | 639               | 0%                     | 0.008                    | 400               | 401               | 0%                 | 0.049                   | 57             | 57             | 0%                  | 0.011                   |
| 944<br>1531       | 973<br>1395       | 3%<br>-9%          | 0.937<br>3.556          | 656<br>656        | 545<br>839        | -61%<br>-105%          | 4.520<br>6.688           | 242<br>810        | 383<br>500        | 58%<br>-38%        | 7.974<br>12.103         | 46<br>65       | 45<br>56       | -3%<br>-14%         | 0.178<br>1.173          |
| 2475              | 2368              | -4%                | 2.174                   | 1312              | 1384              | 5%                     | 1.964                    | 1052              | 883               | 16%                | 5.426                   | 111            | 101            | 9%                  | 1.003                   |
| 904<br>898        | 902<br>768        | 0%<br>-14%         | 0.067<br>4.504          | 506<br>530        | 518<br>473        | -76%<br>-80%           | 0.532<br>2.555           | 367<br>322        | 344<br>256        | -6%<br>-20%        | 1.230<br>3.869          | 31<br>46       | 40<br>39       | 30%<br>-15%         | 1.539<br>1.077          |
| 1802              | 1670              | -7%                | 3.168                   | 1036              | 991               | -4%                    | 1.420                    | 689               | 600               | 13%                | 3.503                   | 77             | 79             | -3%                 | 0.242                   |
| 441<br>719<br>479 | 385<br>742<br>391 | -13%<br>3%<br>-18% | 2.745<br>0.856<br>4.225 | 260<br>371<br>256 | 223<br>471<br>162 | -84%<br>-67%<br>-124%  | 2.360<br>4.874<br>6.510  | 155<br>307<br>198 | 128<br>247<br>204 | -17%<br>-20%<br>3% | 2.243<br>3.629<br>0.459 | 26<br>40<br>26 | 34<br>24<br>25 | 29%<br>-41%<br>-2%  | 1.374<br>2.895<br>0.100 |
| 1639              | 1518              | -7%                | 3.040                   | 887               | 856               | -3%                    | 1.043                    | 660               | 579               | 12%                | 3.239                   | 92             | 83             | 10%                 | 1.001                   |
| 343<br>595<br>435 | 337<br>654<br>302 | -2%<br>10%<br>-31% | 0.337<br>2.379<br>6.928 | 173<br>324<br>288 | 122<br>403<br>94  | -128%<br>-59%<br>-119% | 4.233<br>4.159<br>14.024 | 140<br>229<br>127 | 187<br>229<br>190 | 33%<br>0%<br>50%   | 3.648<br>0.028<br>5.026 | 29<br>41<br>21 | 28<br>22<br>18 | -5%<br>-47%<br>-12% | 0.270<br>3.450<br>0.570 |
| 1373              | 1293              | -6%                | 2.186                   | 785               | 619               | -21%                   | 6.262                    | 497               | 606               | -22%               | 4.663                   | 91             | 68             | 26%                 | 2.618                   |

|    |                      |          |                            |                                          | _         |               |                | AM   | Interp | PM         |
|----|----------------------|----------|----------------------------|------------------------------------------|-----------|---------------|----------------|------|--------|------------|
| ID | Name                 | Link ID  | Status                     | Site Location                            | Direction | A-Node        | B-Node         | Peak | eak    | PM<br>Peak |
| 1  | Screenline           | 55<br>57 | Calibration<br>Calibration | B1385 Corton Road<br>A12 Yarmouth Road   | NB<br>NB  | 9460<br>10257 | 9480<br>6250   |      |        |            |
| •  | 1 - NB               | 59       | Calibration                | B1375 Parkhill                           | NB        | 10001         | 8070           |      |        |            |
|    |                      | 61       | Calibration                | B1074 Bluderston<br>Road                 | NB        | 10025         | 20026          |      |        |            |
|    |                      |          |                            | TOTAL                                    |           | Cali          | bration        | Yes  | Yes    | Yes        |
|    |                      | 56       | Calibration                | B1385 Corton Road                        | SB        | 9480          | 9460           | 103  | 163    | 163        |
| 2  | Screenline           | 58       | Calibration                | A12 Yarmouth Road                        | SB        | 6250          | 10257          |      |        |            |
|    | 1 - SB               | 60       | Calibration                | B1375 Parkhill                           | SB        | 8070          | 10001          |      |        |            |
|    |                      | 62       | Calibration                | B1074 Bluderston<br>Road                 | SB        | 20026         | 10025          |      |        |            |
|    |                      |          |                            | TOTAL                                    |           | Cali          | bration        | Yes  | Yes    | Yes        |
|    | Screenline           | 49       | Calibration                | B1375 Gorleston Road                     | NB        | 8030          | 8040           |      |        |            |
| 3  | 2 - NB               | 51       | Calibration                | A1117 Millennium Way                     | NB        | 7070          | 7080           |      |        |            |
|    |                      |          |                            | TOTAL                                    |           | Cali          | bration        | Yes  | Yes    | Yes        |
|    |                      | 50       | Calibration                | B1375 Gorleston Road                     | SB        | 8040          | 8030           | 165  | 165    | 165        |
| 4  | Screenline<br>2 - SB | 52       | Calibration                | A1117 Millennium Way                     | SB        | 7080          | 7070           |      |        |            |
|    |                      |          |                            |                                          |           |               |                |      |        |            |
|    |                      |          |                            | TOTAL                                    |           |               | bration        | Yes  | Yes    | Yes        |
| 5  | Screenline           | 41       | Calibration                | Peto Way<br>A1117 Normanston             | NB        | 10190         | 7060           |      |        |            |
| ,  | 3 - NB               | 43       | Calibration                | Drive                                    | NEB       | 7050          | 7060           |      |        |            |
|    |                      |          |                            | TOTAL                                    |           | Calil         |                | Yes  | Yes    | Yes        |
|    | Screenline           | 42       | Calibration                | Peto Way                                 | SB        | 7060          | 10190          |      |        |            |
| 6  | 3 - SB               | 44       | Calibration                | A1117 Normanston<br>Drive                | SWB       | 7060          | 7050           |      |        |            |
|    |                      |          |                            | TOTAL                                    |           | Calil         | bration        | Yes  | Yes    | Yes        |
|    | Screenline           | 29       | Calibration                | Katwijk Way                              | NB        | 6040          | 10136          |      |        |            |
| 7  | 4 - NB               | 31       | Calibration                | A12 Battery Green                        | NB        | 6160          | 6150           |      |        |            |
|    |                      |          |                            | Road<br>TOTAL                            |           | Cali          | bration        | Yes  | Yes    | Yes        |
|    |                      | 30       | Calibration                | Katwijk Way                              | SB        | 10136         | 6040           | 100  | 100    | 100        |
| 8  | Screenline<br>4 - SB | 32       | Calibration                | A12 Battery Green                        | SB        | 6150          | 6160           |      |        |            |
|    |                      |          |                            | Road                                     |           |               |                |      |        |            |
|    |                      |          |                            | TOTAL                                    |           |               | bration        | Yes  | Yes    | Yes        |
| 9  | Screenline<br>5 - EB | 22       | Calibration<br>Calibration | Kirkley Run<br>A146 Waveney Drive        | SEB<br>EB | 5270<br>10088 | 10103<br>4010  |      |        |            |
|    |                      |          |                            | TOTAL                                    |           | Calil         | bration        | Yes  | Yes    | Yes        |
| 10 | Screenline           | 21       | Calibration                | Kirkley Run                              | NWB       | 10103         | 5270           |      |        |            |
| 10 | 5 - WB               | 24       | Calibration                | A146 Waveney Drive                       | WB        | 4010          | 10088          |      |        |            |
|    |                      |          |                            | TOTAL                                    |           | Calil         | bration        | Yes  | Yes    | Yes        |
|    |                      | 37       | Calibration                | Denmark Road<br>A1144 Normanston         | EB        | 7200          | 10139          |      |        |            |
| 11 | Screenline<br>6 - EB | 45       | Calibration                | Drive                                    | EB        | 9240          | 9130           |      |        |            |
|    | 0-58                 | 47<br>54 | Calibration<br>Calibration | Oulton Road<br>A12 Yarmouth Road         | EB<br>SEB | 9270<br>10248 | 10010<br>10242 |      |        |            |
|    |                      | 54       | Calibration                | TOTAL                                    | SEB       |               | bration        | Yes  | Yes    | Yes        |
|    |                      | 38       | Calibration                | Denmark Road                             | WB        | 10139         | 7200           | .03  | . 63   | . 63       |
| 12 | Screenline           | 46       | Calibration                | A1144 Normanston                         | WB        | 9130          | 9240           |      |        |            |
| 12 | 6 - WB               | 48       | Calibration                | Drive<br>Oulton Road                     | WB        | 10010         | 9270           |      |        |            |
|    |                      | 53       | Calibration                | A12 Yarmouth Road                        | NWB       | 10242         | 10248          |      | ļ      |            |
|    |                      |          |                            | TOTAL                                    |           |               | bration        | Yes  | Yes    | Yes        |
|    | Screenline<br>7 - EB | 5<br>7   | Calibration<br>Calibration | Gisleham Road<br>A146 Beccles Road       | NB<br>EB  | 9600<br>4514  | 5010<br>4513   |      |        |            |
|    | , - 25               |          | Cambration                 | TOTAL                                    | LU        |               | bration        | Yes  | Yes    | Yes        |
|    | Screenline           | 6        | Calibration                | Gisleham Road                            | SB        | 5010          | 9600           |      |        |            |
|    | 7 - WB               | 8        | Calibration                | A146 Beccles Road                        | WB        | 4513          | 4514           |      | ļ      |            |
|    |                      |          |                            | TOTAL                                    |           | Cali          |                | Yes  | Yes    | Yes        |
|    | Screenline           | 13       | Calibration                | London Road South                        | NEB       | 9606          | 1040           |      |        |            |
| 15 | 8 - NB               | 15<br>17 | Calibration<br>Calibration | A12 Tom Crisp Way<br>A1117 Elm Tree Road | NEB<br>NB | 3000<br>3030  | 10015<br>3040  |      |        |            |
|    | 1                    |          | Galloration                | Liiii iiee Koau                          | IND       | 3030          | 3070           |      |        |            |

| Flow < 5% | Calib | oration | Valid | dation |
|-----------|-------|---------|-------|--------|
| All       | 16    | 100%    | 1     | 25%    |
| Car       |       | 75%     |       |        |
| LGV       |       | 88%     |       |        |
| HGV       |       | 75%     |       |        |

| GEH < 4 | Calib | oration | Valid | dation |
|---------|-------|---------|-------|--------|
|         |       | 100%    | 3     |        |
|         |       | 100%    | 3     |        |
|         |       | 100%    | 4     | 100%   |
|         |       | 100%    | 4     | 100%   |

|                  |          |                            |                                        |            |               |                  |            |               |            |             | HGV         | 12          | 75%            | 0          | 0%<br>Inter | peak           | HGV            | 16         | 100%       | 4          | 100%           |          |          |             |                |
|------------------|----------|----------------------------|----------------------------------------|------------|---------------|------------------|------------|---------------|------------|-------------|-------------|-------------|----------------|------------|-------------|----------------|----------------|------------|------------|------------|----------------|----------|----------|-------------|----------------|
|                  |          |                            |                                        |            |               |                  |            |               |            |             | ,           | All .       |                |            | С           | ar             | inter          | p our      | L          | GV         |                |          | Н        | gV .        |                |
| ame              | Link ID  | Status                     | Site Location                          | Direction  | A-Node        |                  | AM<br>Peak | Interp<br>eak | PM<br>Peak | Observed    | Modelled    | Difference  | GEH            | Observed   | Modelled    | Difference     | GEH            | Observed   | Modelled   | Difference | GEH            | Observed | Modelled | Difference  | GEH            |
| enline           | 55<br>57 | Calibration<br>Calibration | B1385 Corton Road<br>A12 Yarmouth Road | NB<br>NB   | 9460<br>10257 | 9480<br>6250     |            |               |            | 88<br>495   | 87<br>489   | -1%<br>-1%  | 0.074<br>0.276 | 73<br>389  | 73<br>389   | -20%<br>-27%   | 0.019<br>0.018 | 13<br>80   | 12<br>74   | -4%<br>-7% | 0.161<br>0.639 | 2<br>26  | 2<br>26  | 2%<br>-1%   | 0.030<br>0.031 |
| - NB             | 59       | Calibration                | B1375 Parkhill<br>B1074 Bluderston     | NB         | 10001         | 8070             |            |               |            | 263         | 234         | -11%        | 1.869          | 210        | 181         | -39%           | 2.101          | 42         | 42         | 0%         | 0.001          | 11       | 11       | -1%         | 0.023          |
|                  | 61       | Calibration                | Road                                   | NB         | 10025         | 20026            |            |               |            | 116         | 116         | 0%          | 0.031          | 73         | 73          | -59%           | 0.015          | 39         | 39         | 1%         | 0.037          | 4        | 4        | -10%        | 0.213          |
|                  |          |                            | TOTAL                                  |            |               | bration          | Yes        | Yes           | Yes        | 963         | 926         | -4%         | 1.192          | 746        | 716         | -4%            | 1.111          | 173        | 167        | 3%         | 0.456          | 44       | 43       | 1%          | 0.096          |
| enline<br>- SB   | 56<br>58 | Calibration<br>Calibration | B1385 Corton Road<br>A12 Yarmouth Road | SB<br>SB   | 9480<br>6250  | 9460<br>10257    |            |               |            | 99<br>542   | 99<br>502   | 0%<br>-7%   | 0.038<br>1.750 | 80<br>370  | 80<br>331   | -23%<br>-57%   | 0.012<br>2.077 | 17<br>144  | 17<br>143  | 2%<br>-1%  | 0.086<br>0.079 | 2<br>28  | 2<br>28  | 7%<br>-1%   | 0.090<br>0.030 |
| -                | 60<br>62 | Calibration<br>Calibration | B1375 Parkhill<br>B1074 Bluderston     | SB<br>SB   | 8070          | 10001            |            |               |            | 193<br>101  | 186<br>107  | -4%<br>6%   | 0.532          | 140<br>11  | 133<br>18   | -43%<br>-727%  | 0.604<br>1.711 | 46<br>82   | 46<br>82   | 0%<br>0%   | 0.008          | 7 8      | 7        | -3%<br>-8%  | 0.079          |
|                  | 02       | Cambration                 | Road                                   | 35         | 20026         | 10025            |            |               |            |             | <b></b>     | <b>+</b>    | 0.570          |            |             | <del> </del>   | <b></b>        |            |            |            | 0.016          |          | ļ        | <b> </b>    | 0.224          |
|                  | 49       | Calibration                | TOTAL<br>B1375 Gorleston Road          | NB         | 8030          | bration<br>8040  | Yes        | Yes           | Yes        | 935         | 894<br>415  | -4%<br>-7%  | 1.360          | 601<br>336 | 562<br>306  | -7%<br>-41%    | 1.637          | 289<br>92  | 288<br>92  | 0%         | 0.046          | 45<br>18 | 44<br>17 | 2%<br>-3%   | 0.128          |
| enline<br>- NB   | 51       | Calibration                | A1117 Millennium Way                   | NB         | 7070          | 7080             |            |               |            | 438         | 472         | 8%          | 1.575          | 348        | 378         | -17%           | 1.564          | 75         | 81         | 8%         | 0.656          | 15       | 13       | -13%        | 0.528          |
| -                |          |                            | TOTAL                                  | 1          | Cali          | bration          | Yes        | Yes           | Yes        | 884         | 887         | 0%          | 0.114          | 684        | 684         | 0%             | 0.010          | 167        | 173        | -3%        | 0.436          | 33       | 30       | 8%          | 0.459          |
| enline           | 50       | Calibration                | B1375 Gorleston Road                   | SB         | 8040          | 8030             |            |               |            | 473         | 462         | -2%         | 0.489          | 367        | 357         | -31%           | 0.523          | 89         | 89         | 0%         | 0.029          | 16       | 16       | -2%         | 0.090          |
| - SB             | 52       | Calibration                | A1117 Millennium Way                   | SB         | 7080          | 7070             |            |               |            | 392         | 445         | 14%         | 2.597          | 326        | 356         | -11%           | 1.615          | 51         | 74         | 46%        | 2.942          | 15       | 15       | 0%          | 0.017          |
|                  |          |                            | TOTAL                                  |            | Cali          | bration          | Yes        | Yes           | Yes        | 864         | 907         | 5%          | 1.430          | 693        | 713         | 3%             | 0.750          | 140        | 163        | -16%       | 1.865          | 31       | 31       | 1%          | 0.053          |
| enline           | 41       | Calibration                | Peto Way<br>A1117 Normanston           | NB         | 10190         |                  |            |               |            | 445         | 449         | 1%          | 0.178          | 303        | 306         | -46%           | 0.182          | 133        | 133        | 0%         | 0.031          | 10       | 10       | 2%          | 0.074          |
| - NB             | 43       | Calibration                | Drive                                  | NEB        | 7050          | 7060             |            |               |            | 641         | 678         | 6%          | 1.458          | 323        | 358         | -88%           | 1.908          | 297        | 299        | 1%         | 0.089          | 20       | 21       | 3%          | 0.154          |
|                  | 42       | Calibration                | TOTAL<br>Peto Way                      | SB         | 7060          | bration<br>10190 | Yes        | Yes           | Yes        | 1086<br>550 | 1127<br>553 | 4%<br>1%    | 1.238<br>0.146 | 626<br>300 | 664<br>305  | 6%<br>-81%     | 1.511<br>0.274 | 430<br>237 | 432<br>236 | 0%         | 0.091          | 30<br>12 | 31<br>12 | -3%<br>-3%  | 0.169          |
| enline -<br>- SB | 44       | Calibration                | A1117 Normanston                       | SWB        | 7060          | 7050             |            |               |            | 650         | 645         | -1%         | 0.140          | 356        | 363         | -81%           | 0.274          | 270        | 258        | -4%        | 0.724          | 24       | 24       | 1%          | 0.039          |
| -                |          |                            | Drive<br>TOTAL                         |            | Cali          | bration          | Yes        | Yes           | Yes        | 1200        | 1198        | 0%          | 0.047          | 657        | 668         | 2%             | 0.441          | 507        | 494        | 3%         | 0.570          | 36       | 36       | 1%          | 0.035          |
| enline           | 29       | Calibration                | Katwijk Way                            | NB         | 6040          | 10136            | 100        | 100           | 100        | 323         | 297         | -8%         | 1.465          | 193        | 181         | -74%           | 0.849          | 106        | 101        | -5%        | 0.525          | 24       | 15       | -37%        | 2.005          |
| - NB             | 31       | Calibration                | A12 Battery Green<br>Road              | NB         | 6160          | 6150             |            |               |            | 465         | 467         | 0%          | 0.092          | 202        | 204         | -129%          | 0.118          | 238        | 238        | 0%         | 0.019          | 25       | 25       | 0%          | 0.002          |
|                  |          |                            | TOTAL                                  |            | Cali          | bration          | Yes        | Yes           | Yes        | 788         | 764         | -3%         | 0.854          | 395        | 385         | -3%            | 0.503          | 344        | 339        | 1%         | 0.273          | 49       | 40       | 18%         | 1.324          |
| enline           | 30       | Calibration                | Katwijk Way<br>A12 Battery Green       | SB         | 10136         |                  |            |               |            | 204         | 198         | -3%         | 0.454          | 138        | 147         | -42%           | 0.732          | 49         | 49         | 0%         | 0.012          | 17       | 2        | -88%        | 4.920          |
| - SB             | 32       | Calibration                | Road                                   | SB         | 6150          | 6160             |            |               |            | 610         | 583         | -4%         | 1.098          | 355        | 318         | -82%           | 2.024          | 229        | 239        | 5%         | 0.682          | 26       | 26       | 0%          | 0.019          |
|                  | 00       | 0.5                        | TOTAL                                  | 055        |               | bration          | Yes        | Yes           | Yes        | 814         | 781         | -4%         | 1.177          | 493        | 465         | -6%            | 1.297          | 277        | 288        | -4%        | 0.625          | 43       | 28       | 35%         | 2.573          |
| enline<br>- EB   | 22<br>23 | Calibration                | Kirkley Run<br>A146 Waveney Drive      | SEB<br>EB  | 5270<br>10088 | 10103<br>4010    |            |               |            | 109<br>258  | 106<br>262  | -3%<br>2%   | 0.329<br>0.264 | 75<br>151  | 73<br>156   | -49%<br>-67%   | 0.211<br>0.367 | 31<br>97   | 30<br>97   | -3%<br>0%  | 0.186<br>0.001 | 4<br>9   | 3<br>9   | -16%<br>-3% | 0.320<br>0.095 |
|                  |          |                            | TOTAL                                  |            |               | bration          | Yes        | Yes           | Yes        | 367         | 368         | 0%          | 0.044          | 226        | 229         | 1%             | 0.182          | 128        | 127        | 1%         | 0.092          | 13       | 12       | 7%          | 0.246          |
| enline<br>WB     | 21<br>24 | Calibration<br>Calibration | Kirkley Run<br>A146 Waveney Drive      | NWB<br>WB  | 10103<br>4010 | 5270<br>10088    |            |               |            | 132<br>266  | 136<br>264  | 3%<br>-1%   | 0.315<br>0.111 | 90<br>134  | 93<br>135   | -44%<br>-98%   | 0.281<br>0.124 | 38<br>122  | 39<br>119  | 1%<br>-3%  | 0.087<br>0.296 | 4<br>10  | 4<br>10  | 12%<br>0%   | 0.216<br>0.000 |
|                  |          |                            | TOTAL                                  |            | Cali          | bration          | Yes        | Yes           | Yes        | 398         | 400         | 0%          | 0.092          | 224        | 228         | 2%             | 0.275          | 161        | 158        | 2%         | 0.215          | 14       | 14       | -3%         | 0.113          |
|                  | 37       | Calibration                | Denmark Road<br>A1144 Normanston       | EB         | 7200          | 10139            |            |               |            | 237         | 244         | 3%          | 0.456          | 153        | 158         | -52%           | 0.420          | 78         | 79         | 2%         | 0.165          | 7        | 7        | 6%          | 0.142          |
| enline<br>- EB   | 45<br>47 | Calibration                | Drive<br>Oulton Road                   | EB<br>EB   | 9240<br>9270  | 9130<br>10010    |            |               |            | 281<br>325  | 298<br>266  | 6%<br>-18%  | 0.975<br>3.421 | 160<br>182 | 176<br>171  | -66%<br>-85%   | 1.260<br>0.812 | 110<br>134 | 110<br>86  | 0%<br>-36% | 0.005<br>4.563 | 12       | 12<br>9  | 2%<br>-2%   | 0.064          |
| ļ                | 54       | Calibration                | A12 Yarmouth Road                      | SEB        | 10248         |                  |            | <b></b>       |            | 510         | 481         | -6%         | 1.309          | 299        | 270         | -80%           | 1.717          | 185        | 185        | 0%         | 0.035          | 26       | 26       | 1%          | 0.062          |
|                  |          |                            | TOTAL                                  |            |               | bration          | Yes        | Yes           | Yes        | 1353        | 1289        | -5%         | 1.768          | 793        | 775         | -2%            | 0.650          | 507        | 460        | 9%         | 2.129          | 53       | 54       | -1%         | 0.102          |
| enline           | 38<br>46 | Calibration<br>Calibration | Denmark Road<br>A1144 Normanston       | WB<br>WB   | 10139<br>9130 | 7200<br>9240     |            |               |            | 338<br>275  | 345<br>275  | 2%<br>0%    | 0.367          | 228<br>180 | 232<br>177  | -47%<br>-54%   | 0.253<br>0.252 | 99<br>83   | 102<br>87  | 3%<br>4%   | 0.278<br>0.390 | 11<br>11 | 11<br>11 | 1%<br>-3%   | 0.047<br>0.087 |
| · WB             | 48       | Calibration                | Drive<br>Oulton Road                   | WB         | 10010         | 9270             |            |               |            | 270         | 253         | -6%         | 1.058          | 164        | 161         | -67%           | 0.232          | 99         | 84         | -15%       | 1.557          | 8        | 8        | 6%          | 0.164          |
|                  | 53       | Calibration                | A12 Yarmouth Road                      | NWB        | 10242         | 10248            |            |               |            | 508         | 508         | 0%          | 0.002          | 318        | 318         | -60%           | 0.017          | 168        | 168        | 0%         | 0.004          | 22       | 22       | -1%         | 0.039          |
| enline           | 5        | Calibration                | TOTAL Gisleham Road                    | NB         | 9600          |                  | Yes        | Yes           | Yes        | 1391        | 1381        | -1%<br>-49% | 0.278<br>2.521 | 890        | 888         | 0%<br>-186%    | 0.064          | 450<br>11  | 441<br>3   | 2%<br>-74% | 0.406<br>3.118 | 52       | 52       | 0%<br>2%    | 0.019          |
| - EB             | 7        | Calibration                | A146 Beccles Road                      | EB         | 4514          | 4513             |            | <b></b>       |            | 589         | 617         | 5%          | 1.147          | 227        | 254         | -148%          | 1.752          | 316        | 316        | 0%         | 0.028          | 47       | 47       | 1%          | 0.073          |
|                  |          | 0.5                        | TOTAL                                  |            | Cali          |                  | Yes        | Yes           | Yes        | 609         | 627         | 3%          | 0.742          | 234        | 260         | 11%            | 1.640          | 327        | 319        | 2%         | 0.437          | 47       | 48       | -1%         | 0.075          |
| enline<br>· WB   | 6<br>8   | Calibration<br>Calibration | Gisleham Road<br>A146 Beccles Road     | SB<br>WB   | 5010<br>4513  | 9600<br>4514     |            |               |            | 22<br>588   | 24<br>588   | 7%<br>0%    | 0.318<br>0.014 | 10<br>161  | 10<br>162   | -127%<br>-264% | 0.063<br>0.066 | 12<br>378  | 12<br>378  | 3%<br>0%   | 0.109<br>0.009 | 1<br>48  | 2<br>48  | 92%<br>-1%  | 0.777<br>0.048 |
|                  |          |                            | TOTAL                                  |            | Cali          | bration          | Yes        | Yes           | Yes        | 610         | 612         | 0%          | 0.075          | 171        | 172         | 1%             | 0.079          | 390        | 390        | 0%         | 0.011          | 49       | 50       | -1%         | 0.089          |
| enline           | 13<br>15 | Calibration<br>Calibration | London Road South<br>A12 Tom Crisp Way | NEB<br>NEB | 9606<br>3000  | 1040<br>10015    |            |               |            | 385<br>490  | 367<br>535  | -5%<br>9%   | 0.937<br>2.010 | 207<br>353 | 198<br>391  | -90%<br>-28%   | 0.662<br>1.957 | 158<br>114 | 151<br>121 | -5%<br>6%  | 0.589<br>0.609 | 19<br>22 | 18<br>23 | -7%<br>5%   | 0.330<br>0.241 |
| NB               | 17       | Calibration                | A1117 Elm Tree Road                    |            | 3030          | 3040             |            |               |            | 382         | 389         | 2%          | 0.338          | 211        | 218         | -78%           | 0.490          | 153        | 153        | 0%         | 0.038          | 18       | 18       | 0%          | 0.016          |

Inde:

| ID | Name       | Link ID                       | Ctatus      | Sita Location       | Direction | A Nodo | D Node  | AM  | Interp | PM  |
|----|------------|-------------------------------|-------------|---------------------|-----------|--------|---------|-----|--------|-----|
|    | Nama       | 1182                          |             | TOTAL               | IIII      |        | oration | Yes | Yes    | Yes |
|    | Screenline | 14                            | Calibration | London Road South   | SWB       | 1040   | 9606    |     |        |     |
| 16 | 8 - SB     | 16                            | Calibration | A12 Tom Crisp Way   | SWB       | 10015  | 3000    |     |        |     |
|    | 0-05       | 18                            | Calibration | A1117 Elm Tree Road | SB        | 3040   | 3030    |     |        |     |
|    |            |                               |             | TOTAL               | Calit     |        | Yes     | Yes | Yes    |     |
| 19 | Screenline | 81                            | Validation  | Saltwater Way       | NB        | 2050   | 2060    |     |        |     |
| 19 | 9 - NB     | 79                            | Validation  | A12 Pier Terrace    | NB        | 1260   | 10023   |     |        |     |
|    |            |                               |             | TOTAL               | Vali      | dation | Yes     | Yes | Yes    |     |
| 20 | Screenline | 82                            | Validation  | Saltwater Way       | SB        | 2060   | 2050    |     |        |     |
| 20 | 9 - SB     | 80                            | Validation  | A12 Pier Terrace    | SB        | 10023  | 1260    |     |        |     |
|    |            |                               |             | TOTAL               |           | Vali   | dation  | Yes | Yes    | Yes |
|    | Screenline | 9                             | Validation  | A1145 Castleton     | EB        | 5110   | 5060    |     |        |     |
| 21 | 10 - NB    | 11                            | Validation  | A12 London Road     | NB        | 5390   | 1000    |     |        |     |
|    | 10 - 140   | 19                            | Validation  | A146 Beccles Road   | NEB       | 10111  | 10109   |     |        |     |
|    |            |                               |             | TOTAL               |           | Vali   | dation  | Yes | Yes    | Yes |
|    | Screenline | 10                            | Validation  | A1145 Castleton     | WB        | 5060   | 5110    |     |        |     |
| 22 | 10 - SB    | 12 Validation A12 London Road |             | SB                  | 1000      | 5390   |         |     |        |     |
|    | 10-36      | 20                            | Validation  | SWB                 | 10109     | 10111  |         | L   |        |     |
|    |            |                               |             | TOTAL               |           | Vali   | dation  | Yes | Yes    | Yes |

|        |       | Flow < 5% |    | Calibration |   |  |  |
|--------|-------|-----------|----|-------------|---|--|--|
| Screen | lines | All       | 16 | 100%        | 1 |  |  |
| ration | 16    | Car       | 12 |             | 1 |  |  |
|        |       | LGV       | 14 | 88%         | 2 |  |  |
|        |       | HGV       | 49 |             | 0 |  |  |

| GEH < 4 | Calib | ration | Validation |      |  |  |  |
|---------|-------|--------|------------|------|--|--|--|
| All     | 16    | 100%   | 3          | 75%  |  |  |  |
| Car     | 16    | 100%   | 3          |      |  |  |  |
| LGV     | 16    | 100%   | 4          | 100% |  |  |  |
| HGV     | 16    | 100%   | 4          | 100% |  |  |  |

|                   | Interpeak         |                    |                         |                   |                   |                        |                          |                   |                   |                     |                         |                |                |                     |                         |
|-------------------|-------------------|--------------------|-------------------------|-------------------|-------------------|------------------------|--------------------------|-------------------|-------------------|---------------------|-------------------------|----------------|----------------|---------------------|-------------------------|
|                   |                   | All                |                         |                   | C                 | ar                     |                          | LGV               |                   |                     |                         | HGV            |                |                     |                         |
| Observed          | Modelled          | Difference         | O.F.H                   | Observed          | Modelled          | Difference             | OEH                      | Observed          | Modelled          | Difforence          | CEU                     | Observed       | Modelled       | Difference          | OEU.                    |
| 1257              | 1291              | 3%                 | 0.951                   | 772               | 807               | 5%                     | 1.263                    | 426               | 425               | 0%                  | 0.057                   | 59             | 59             | 1%                  | 0.046                   |
| 408<br>492<br>405 | 411<br>499<br>395 | 1%<br>2%<br>-2%    | 0.147<br>0.332<br>0.481 | 203<br>326<br>235 | 205<br>325<br>235 | -100%<br>-51%<br>-72%  | 0.167<br>0.076<br>0.028  | 184<br>141<br>153 | 185<br>150<br>143 | 0%<br>6%<br>-6%     | 0.050<br>0.706<br>0.792 | 21<br>24<br>17 | 21<br>24<br>17 | 0%<br>1%<br>3%      | 0.017<br>0.045<br>0.108 |
| 1304              | 1305              | 0%                 | 0.021                   | 764               | 765               | 0%                     | 0.021                    | 478               | 478               | 0%                  | 0.020                   | 61             | 62             | -1%                 | 0.075                   |
| 983<br>1041       | 957<br>955        | -3%<br>-8%         | 0.845<br>2.722          | 718<br>453        | 526<br>570        | -64%<br>-104%          | 7.686<br>5.177           | 228<br>532        | 391<br>346        | 72%<br>-35%         | 9.284<br>8.883          | 38<br>56       | 40<br>39       | 5%<br>-30%          | 0.329<br>2.459          |
| 2024              | 1912              | -6%                | 2.532                   | 1171              | 1096              | -6%                    | 2.216                    | 760               | 737               | 3%                  | 0.835                   | 94             | 79             | 16%                 | 1.601                   |
| 931<br>1051       | 974<br>1090       | 5%<br>4%           | 1.410<br>1.182          | 575<br>612        | 577<br>687        | -61%<br>-60%           | 0.079<br>2.932           | 329<br>394        | 357<br>352        | 9%<br>-11%          | 1.525<br>2.178          | 27<br>45       | 40<br>51       | 50%<br>13%          | 2.318<br>0.867          |
| 1982              | 2064              | 4%                 | 1.827                   | 1187              | 1264              | 6%                     | 2.188                    | 723               | 709               | 2%                  | 0.517                   | 72             | 91             | -27%                | 2.150                   |
| 306<br>642<br>417 | 369<br>615<br>301 | 20%<br>-4%<br>-28% | 3.412<br>1.096<br>6.104 | 161<br>313<br>224 | 189<br>355<br>131 | -73%<br>-92%<br>-127%  | 2.131<br>2.322<br>6.982  | 123<br>292<br>172 | 152<br>237<br>153 | 24%<br>-19%<br>-11% | 2.514<br>3.355<br>1.519 | 23<br>38<br>20 | 28<br>23<br>17 | 22%<br>-40%<br>-16% | 0.999<br>2.775<br>0.745 |
| 1365              | 1285              | -6%                | 2.209                   | 697               | 675               | -3%                    | 0.856                    | 586               | 542               | 8%                  | 1.872                   | 82             | 68             | 17%                 | 1.566                   |
| 322<br>664<br>399 | 297<br>615<br>316 | -8%<br>-7%<br>-21% | 1.430<br>1.926<br>4.391 | 158<br>375<br>258 | 102<br>363<br>116 | -139%<br>-80%<br>-110% | 4.941<br>0.610<br>10.393 | 137<br>249<br>124 | 168<br>235<br>179 | 22%<br>-6%<br>44%   | 2.469<br>0.922<br>4.425 | 26<br>40<br>16 | 27<br>17<br>21 | 3%<br>-57%<br>28%   | 0.138<br>4.252<br>1.065 |
| 1385              | 1228              | -11%               | 4.340                   | 791               | 581               | -27%                   | 8.026                    | 511               | 582               | -14%                | 3.023                   | 82             | 65             | 21%                 | 2.017                   |

Index

| ID | Name                 | Link ID  | Status                     | Site Location                          | Direction  | A-Node         | B-Node        | AM<br>Peak | Interp<br>eak | PM<br>Peak |
|----|----------------------|----------|----------------------------|----------------------------------------|------------|----------------|---------------|------------|---------------|------------|
| 1  | Screenline           | 55       | Calibration                | B1385 Corton Road                      | NB         | 9460           | 9480          |            |               |            |
| 1  | 1 - NB               | 57<br>59 | Calibration<br>Calibration | A12 Yarmouth Road<br>B1375 Parkhill    | NB<br>NB   | 10257<br>10001 | 6250<br>8070  |            |               |            |
|    |                      | 61       | Calibration                | B1074 Bluderston                       | NB         | 10025          | 20026         |            |               |            |
|    |                      |          |                            | Road                                   |            |                |               |            |               |            |
|    |                      |          |                            | TOTAL                                  |            |                | bration       | Yes        | Yes           | Yes        |
| 2  | Screenline           | 56<br>58 | Calibration<br>Calibration | B1385 Corton Road<br>A12 Yarmouth Road | SB<br>SB   | 9480<br>6250   | 9460<br>10257 |            |               |            |
| -  | 1 - SB               | 60       | Calibration                | B1375 Parkhill                         | SB         | 8070           | 10001         |            |               |            |
|    |                      | 62       | Calibration                | B1074 Bluderston<br>Road               | SB         | 20026          | 10025         |            |               |            |
|    |                      |          |                            | TOTAL                                  |            | Cali           | bration       | Yes        | Yes           | Yes        |
|    |                      | 49       | Calibration                | B1375 Gorleston Road                   | NB         | 8030           | 8040          | 163        | 163           | 163        |
| 3  | Screenline<br>2 - NB | 51       | Calibration                | A1117 Millennium Way                   | NB         | 7070           | 7080          |            |               |            |
|    | 2-ND                 | 31       | Cambration                 | · ·                                    | IND        |                |               |            | ļ             |            |
|    |                      |          |                            | TOTAL                                  |            |                |               | Yes        | Yes           | Yes        |
| 4  | Screenline           | 50       | Calibration                | B1375 Gorleston Road                   | SB         | 8040           | 8030          |            |               |            |
| 4  | 2 - SB               | 52       | Calibration                | A1117 Millennium Way                   | SB         | 7080           | 7070          |            |               |            |
|    |                      |          |                            | TOTAL                                  | Cali       | bration        | Yes           | Yes        | Yes           |            |
|    | Screenline           | 41       | Calibration                | Peto Way                               | NB         | 10190          | 7060          |            |               |            |
| 5  | 3 - NB               | 43       | Calibration                | A1117 Normanston                       | NEB        | 7050           | 7060          |            |               |            |
|    |                      |          |                            | Drive<br>TOTAL                         |            | Cett           | bration       | Yes        | Yes           | Yes        |
|    |                      | 42       | Calibration                | Peto Way                               | SB         | 7060           | 10190         | res        | res           | res        |
| 6  | Screenline<br>3 - SB | 44       | Calibration                | A1117 Normanston                       | SWB        | 7060           | 7050          |            |               |            |
|    | 3-35                 | 44       | Calibration                | Drive                                  | SWB        | 7060           | 7050          |            | ļ             |            |
|    |                      |          |                            | TOTAL                                  |            | Calil          |               | Yes        | Yes           | Yes        |
| _  | Screenline           | 29       | Calibration                | Katwijk Way                            | NB         | 6040           | 10136         |            |               |            |
| 7  | 4 - NB               | 31       | Calibration                | A12 Battery Green<br>Road              | NB         | 6160           | 6150          |            |               |            |
|    |                      |          |                            | TOTAL                                  |            | Cali           | bration       | Yes        | Yes           | Yes        |
|    | Screenline           | 30       | Calibration                | Katwijk Way                            | SB         | 10136          | 6040          |            |               |            |
| 8  | 4 - SB               | 32       | Calibration                | A12 Battery Green<br>Road              | SB         | 6150           | 6160          |            |               |            |
|    |                      |          |                            | TOTAL                                  |            | Cali           | bration       | Yes        | Yes           | Yes        |
|    | Screenline           | 22       | Calibration                | Kirkley Run                            | SEB        | 5270           | 10103         | 100        | 100           | 100        |
| 9  | 5 - EB               | 23       | Calibration                | A146 Waveney Drive                     | EB         | 10088          | 4010          |            |               |            |
|    |                      |          |                            | TOTAL                                  |            | Cali           |               | Yes        | Yes           | Yes        |
| 10 | Screenline           | 21       | Calibration                | Kirkley Run                            | NWB        | 10103          | 5270          |            |               |            |
| 10 | 5 - WB               | 24       | Calibration                | A146 Waveney Drive                     | WB         | 4010           | 10088         |            | ļ             |            |
|    | <u></u>              |          |                            | TOTAL                                  |            |                | bration       | Yes        | Yes           | Yes        |
|    |                      | 37       | Calibration                | Denmark Road                           | EB         | 7200           | 10139         |            |               |            |
| 11 | Screenline<br>6 - FR | 45       | Calibration                | A1144 Normanston<br>Drive              | EB         | 9240           | 9130          |            |               |            |
|    | P-FR                 | 47       | Calibration                | Oulton Road                            | EB         | 9270           | 10010         |            |               |            |
|    |                      | 54       | Calibration                | A12 Yarmouth Road                      | SEB        | 10248          | 10242         | Yes        | Yes           | Yes        |
|    |                      | 20       | Coffication                |                                        | WD         |                | bration       | Yes        | res           | res        |
|    | Carac                | 38       | Calibration                | Denmark Road<br>A1144 Normanston       | WB         | 10139          | 7200          |            |               |            |
| 12 | Screenline<br>6 - WB | 46       | Calibration                | Drive                                  | WB         | 9130           | 9240          |            |               |            |
|    |                      | 48<br>53 | Calibration<br>Calibration | Oulton Road<br>A12 Yarmouth Road       | WB<br>NWB  | 10010<br>10242 | 9270<br>10248 |            |               |            |
|    |                      |          |                            | TOTAL                                  |            |                | bration       | Yes        | Yes           | Yes        |
|    | Screenline           | 5        | Calibration                | Gisleham Road                          | NB         | 9600           | 5010          |            |               |            |
|    | 7 - EB               | 7        | Calibration                | A146 Beccles Road                      | EB         | 4514           | 4513          |            | ļ             |            |
|    |                      |          |                            | TOTAL                                  |            | Cali           |               | Yes        | Yes           | Yes        |
|    | Screenline           | 6        | Calibration                | Gisleham Road                          | SB         | 5010           | 9600          |            |               |            |
|    | 7 - WB               | 8        | Calibration                | A146 Beccles Road                      | WB         | 4513           | 4514          |            | ļ             |            |
|    |                      |          |                            | TOTAL                                  |            | Cali           | bration       | Yes        | Yes           | Yes        |
|    |                      |          |                            |                                        |            |                |               |            |               |            |
| 15 | Screenline<br>8 - NB | 13<br>15 | Calibration<br>Calibration | London Road South<br>A12 Tom Crisp Way | NEB<br>NEB | 9606<br>3000   | 1040<br>10015 |            |               |            |

|    | Flow < 5% | Calit | oration | Validation |     |  |
|----|-----------|-------|---------|------------|-----|--|
| es | All       | 14    | 88%     |            | 50% |  |
|    | Car       |       | 94%     |            | 25% |  |
|    | LGV       |       | 44%     |            | 75% |  |
|    | HGV       |       | 44%     |            | 0%  |  |

| GEH < 4 | Calib | ration | Validation |      |  |  |  |
|---------|-------|--------|------------|------|--|--|--|
| All     |       | 100%   |            | 50%  |  |  |  |
| Car     |       | 100%   |            | 50%  |  |  |  |
| LGV     |       | 94%    |            | 100% |  |  |  |
| HGV     |       | 100%   |            | 100% |  |  |  |

|             |             |             |                |             |             |                | PM             | Peak       |            |             | 10070          |          | 10070    |              |                |
|-------------|-------------|-------------|----------------|-------------|-------------|----------------|----------------|------------|------------|-------------|----------------|----------|----------|--------------|----------------|
|             | А           | JI          |                |             | С           | ar             |                |            | LC         | SV          |                |          | H        | GV           |                |
| Observed    | Modelled    | Difference  | GEH            | Observed    | Modelled    | Difference     | GEH            | Observed   | Modelled   | Difference  | GEH            | Observed | Modelled | Difference   | GEH            |
| 104<br>656  | 104<br>687  | 0%<br>5%    | 0.025<br>1.180 | 88<br>561   | 89<br>574   | -17%<br>-15%   | 0.066<br>0.564 | 14<br>76   | 14<br>100  | -1%<br>32%  | 0.033<br>2.558 | 1<br>20  | 1<br>13  | -20%<br>-35% | 0.236<br>1.692 |
| 315         | 304         | -3%         | 0.597          | 257         | 247         | -15%           | 0.564          | 51         | 51         | 0%          | 0.035          | 7        | 6        | -35%         | 0.200          |
| 219         | 229         | 5%          | 0.677          | 144         | 154         | -45%           | 0.809          | 70         | 70         | 0%          | 0.015          | 5        | 5        | 8%           | 0.171          |
| 1294        | 1324        | 2%          | 0.842          | 1050        | 1064        | 1%             | 0.436          | 212        | 235        | -11%        | 1.573          | 32       | 25       | 22%          | 1.352          |
| 93          | 93          | 0%          | 0.013          | 77          | 77          | -21%           | 0.014          | 16         | 16         | 2%          | 0.094          | 0        | 0        | -100%        | 0.866          |
| 730<br>485  | 672<br>430  | -8%<br>-11% | 2.180<br>2.571 | 530<br>375  | 479<br>375  | -47%<br>-29%   | 2.271<br>0.013 | 182<br>101 | 176<br>46  | -4%<br>-54% | 0.480<br>6.415 | 17<br>9  | 17<br>9  | -2%<br>3%    | 0.069<br>0.084 |
| 143         | 173         | 21%         | 2.428          | 21          | 51          | -446%          | 5.101          | 115        | 115        | 0%          | 0.035          | 7        | 7        | 6%           | 0.144          |
| 1450        | 1368        | -6%         | 2.187          | 1003        | 982         | -2%            | 0.655          | 414        | 353        | 15%         | 3.136          | 33       | 33       | 0%           | 0.006          |
| 543         | 523         | -4%         | 0.860          | 429         | 410         | -31%           | 0.941          | 105        | 105        | 0%          | 0.042          | 8        | 8        | -2%          | 0.050          |
| 545         | 569         | 4%          | 1.012          | 443         | 468         | -17%           | 1.154          | 89         | 89         | 0%          | 0.000          | 13       | 12       | -6%          | 0.213          |
| 1088        | 1092        | 0%          | 0.122          | 873         | 878         | 1%             | 0.180          | 194        | 194        | 0%          | 0.031          | 21       | 20       | 4%           | 0.197          |
| 702         | 655         | -7%         | 1.804          | 570         | 561         | -25%           | 0.384          | 119        | 81         | -32%        | 3.800          | 13       | 13       | 1%           | 0.040          |
| 510         | 601         | 18%         | 3.850          | 448         | 473         | -8%            | 1.189          | 55         | 120        | 117%        | 6.901          | 7        | 8        | 8%           | 0.225          |
| 1212        | 1256        | 4%          | 1.245          | 1018        | 1034        | 2%             | 0.511          | 174        | 201        | -15%        | 1.943          | 20       | 21       | -4%          | 0.169          |
| 423         | 401         | -5%         | 1.078          | 295         | 294         | -44%           | 0.044          | 120        | 100        | -17%        | 1.896          | 8        | 7        | -15%         | 0.453          |
| 608         | 598         | -2%         | 0.399          | 297         | 297         | -105%          | 0.023          | 298        | 289        | -3%         | 0.537          | 12       | 12       | -2%          | 0.057          |
| 1031        | 999<br>588  | -3%<br>-3%  | 0.994          | 592<br>335  | 591<br>320  | 0%<br>-86%     | 0.047          | 418<br>264 | 389        | 7%<br>-2%   | 1.447<br>0.394 | 20       | 19<br>10 | 7%<br>1%     | 0.326          |
| 609<br>648  | 641         | -3%         | 0.848<br>0.291 | 335         | 320         | -86%<br>-78%   | 0.802<br>0.502 | 264        | 258<br>272 | -2%<br>2%   | 0.394          | 10<br>12 | 8        | 1%<br>-32%   | 0.040<br>1.208 |
| 1257        | 1229        | -2%         | 0.798          | 705         | 681         | -3%            | 0.915          | 530        | 530        | 0%          | 0.016          | 22       | 18       | 17%          | 0.825          |
| 307         | 282         | -2%         | 1.476          | 186         | 180         | -3%            | 0.915          | 101        | 93         | -7%         | 0.016          | 21       | 9        | -58%         | 3.167          |
| 457         | 467         | 2%          | 0.479          | 241         | 246         | -88%           | 0.348          | 206        | 211        | 2%          | 0.762          | 10       | 10       | 1%           | 0.045          |
| 764         | 749         | -2%         | 0.547          | 426         | 426         | 0%             | 0.003          | 307        | 304        | 1%          | 0.159          | 31       | 19       | 39%          | 2.433          |
| 225         | 221         | -2%         | 0.268          | 165         | 212         | -8%            | 3.410          | 46         | 8          | -83%        | 7.292          | 14       | 1        | -93%         | 4.747          |
| 911         | 881         | -3%         | 1.006          | 581         | 550         | -62%           | 1.293          | 309        | 308        | 0%          | 0.036          | 22       | 23       | 6%           | 0.264          |
| 1136        | 1102        | -3%         | 1.020          | 746         | 762         | 2%             | 0.586          | 354        | 316        | 11%         | 2.100          | 36       | 24       | 33%          | 2.150          |
| 183<br>221  | 178<br>221  | -3%<br>0%   | 0.372<br>0.000 | 132<br>140  | 131<br>142  | -39%<br>-56%   | 0.065<br>0.159 | 49<br>75   | 45<br>79   | -9%<br>5%   | 0.619<br>0.430 | 2<br>6   | 2        | 0%<br>-100%  | 0.000<br>3.367 |
| 404         | 399         | -1%         | 0.250          | 272         | 273         | 0%             | 0.069          | 124        | 124        | 0%          | 0.042          | 8        | 2        | 74%          | 2.578          |
| 219<br>431  | 190         | -13%        | 2.028<br>0.112 | 155         | 153<br>235  | -43%<br>-84%   | 0.141<br>0.160 | 62<br>189  | 35         | -44%<br>0%  | 3.877<br>0.032 | 2<br>10  | 2 9      | -11%         | 0.171          |
| 650         | 433<br>623  | 1%<br>-4%   | 1.057          | 233         | 388         | 0%             | 0.035          | 251        | 189<br>224 | 11%         | 1.724          | 12       | 11       | -6%<br>7%    | 0.182          |
| 261         | 252         | -3%         | 0.554          | 182         | 180         | -45%           | 0.112          | 77         | 69         | -10%        | 0.879          | 3        | 3        | 4%           | 0.073          |
| 238         | 222         | -7%         | 1.055          | 142         | 161         | -54%           | 1.565          | 90         | 56         | -38%        | 3.979          | 6        | 5        | -20%         | 0.527          |
| 371         | 286         | -23%        | 4.664          | 205         | 184         | -91%           | 1.532          | 160        | 96         | -40%        | 5.618          | 6        | 6        | 7%           | 0.156          |
| 601<br>1470 | 572<br>1332 | -5%<br>-9%  | 1.197<br>3.697 | 380<br>908  | 358<br>883  | -64%<br>-3%    | 1.132<br>0.848 | 206<br>532 | 199<br>420 | -4%<br>21%  | 0.518<br>5.150 | 15<br>30 | 15<br>29 | 1%<br>2%     | 0.032<br>0.115 |
| 406         | 406         | 0%          | 0.012          | 290         | 304         | -35%           | 0.805          | 107        | 95         | -12%        | 1.230          | 8        | 7        | -15%         | 0.453          |
| 323         | 292         | -9%         | 1.740          | 211         | 200         | -58%           | 0.785          | 102        | 86         | -16%        | 1.675          | 9        | 6        | -33%         | 1.095          |
| 353         | 355         | 1%          | 0.100          | 220         | 221         | -60%           | 0.076          | 126        | 127        | 1%          | 0.089          | 7        | 7        | -3%          | 0.094          |
| 702<br>1783 | 702<br>1755 | -2%         | 0.009          | 472<br>1193 | 471<br>1196 | -49%<br>0%     | 0.029          | 215<br>551 | 215<br>523 | 0%<br>5%    | 0.026<br>1.208 | 15<br>39 | 16<br>36 | 8%<br>8%     | 0.319          |
| 42          | 1755        | -2%         | 2.594          | 1193        | 1196        | -192%          | 1.019          | 26         | 15         | -42%        | 2.417          | 39       | 0        | -100%        | 1.033          |
| 896         | 924         | 3%          | 0.928          | 383         | 405         | -128%          | 1.134          | 489        | 494        | 1%          | 0.248          | 25       | 25       | 0%           | 0.000          |
| 938         | 951         | 1%          | 0.414          | 398         | 417         | 5%             | 0.926          | 514        | 509        | 1%          | 0.240          | 26       | 25       | 2%           | 0.106          |
| 26<br>664   | 20<br>653   | -24%<br>-2% | 1.342<br>0.429 | 12<br>193   | 12<br>182   | -117%<br>-250% | 0.115<br>0.803 | 13<br>448  | 7<br>448   | -47%<br>0%  | 1.933<br>0.024 | 1<br>24  | 1<br>23  | 7%<br>-2%    | 0.068<br>0.104 |
| 690         | 673         | -3%         | 0.669          | 205         | 194         | -6%            | 0.807          | 461        | 455        | 1%          | 0.263          | 24       | 24       | 2%           | 0.088          |
| 520<br>502  | 504<br>559  | -3%<br>11%  | 0.718<br>2.475 | 287<br>383  | 275<br>431  | -86%<br>-19%   | 0.686<br>2.371 | 218<br>111 | 213<br>120 | -2%<br>9%   | 0.315<br>0.885 | 16<br>8  | 16<br>8  | -1%<br>-4%   | 0.031<br>0.117 |
| 421         | 417         | -1%         | 0.177          | 254         | 246         | -69%           | 0.490          | 159        | 164        | 3%          | 0.364          | 8        | 7        | -7%          | 0.117          |

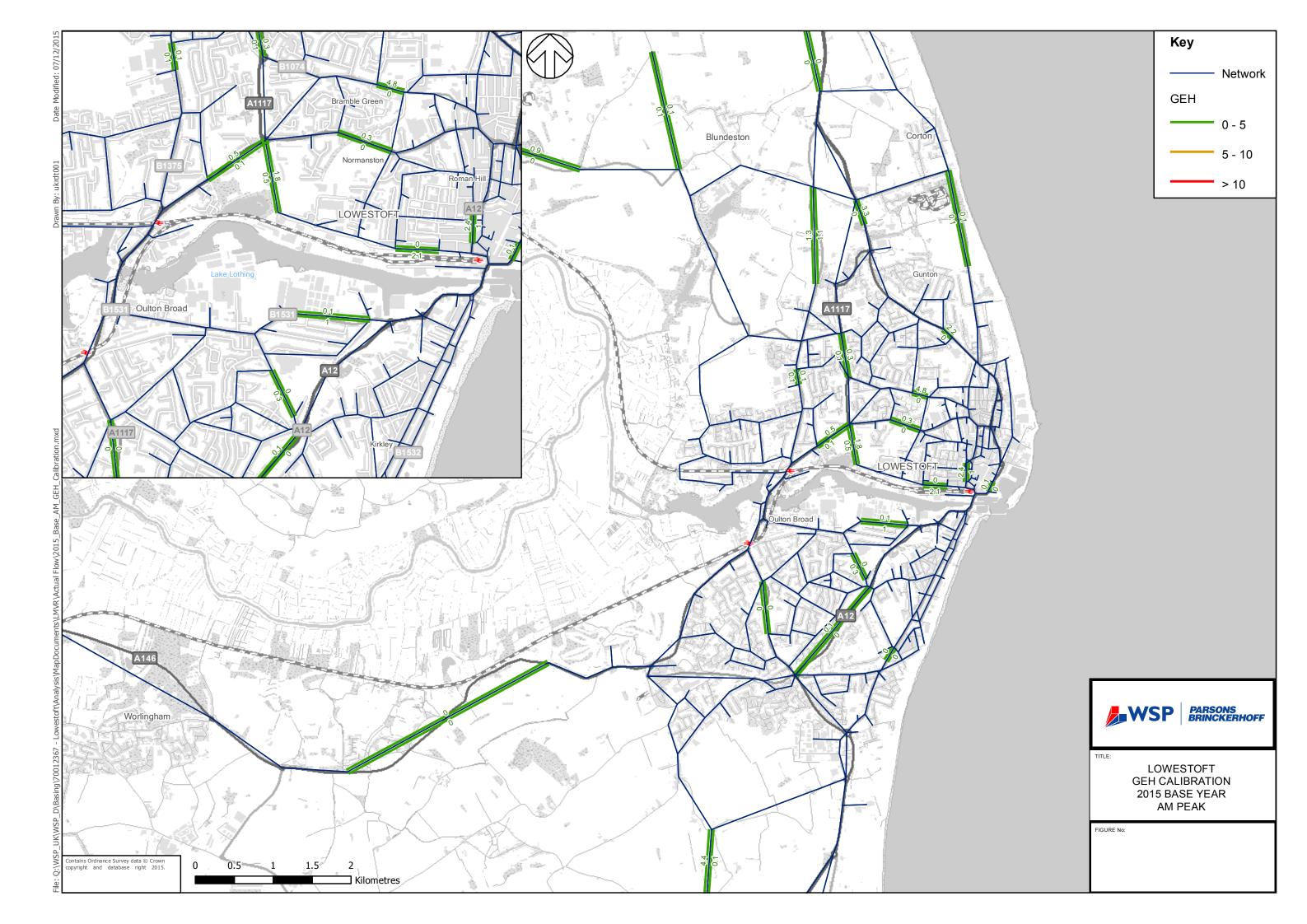
Inde:

| ID | Name       | Link ID                       | Ctatus      | Sita Location       | Direction | A Nodo | D Node  | AM  | Interp | PM  |
|----|------------|-------------------------------|-------------|---------------------|-----------|--------|---------|-----|--------|-----|
|    | Nama       | 1182                          |             | TOTAL               | IIII      |        | oration | Yes | Yes    | Yes |
|    | Screenline | 14                            | Calibration | London Road South   | SWB       | 1040   | 9606    |     |        |     |
| 16 | 8 - SB     | 16                            | Calibration | A12 Tom Crisp Way   | SWB       | 10015  | 3000    |     |        |     |
|    | 0-05       | 18                            | Calibration | A1117 Elm Tree Road | SB        | 3040   | 3030    |     |        |     |
|    |            |                               |             | TOTAL               | Calit     |        | Yes     | Yes | Yes    |     |
| 19 | Screenline | 81                            | Validation  | Saltwater Way       | NB        | 2050   | 2060    |     |        |     |
| 19 | 9 - NB     | 79                            | Validation  | A12 Pier Terrace    | NB        | 1260   | 10023   |     |        |     |
|    |            |                               |             | TOTAL               | Vali      | dation | Yes     | Yes | Yes    |     |
| 20 | Screenline | 82                            | Validation  | Saltwater Way       | SB        | 2060   | 2050    |     |        |     |
| 20 | 9 - SB     | 80                            | Validation  | A12 Pier Terrace    | SB        | 10023  | 1260    |     |        |     |
|    |            |                               |             | TOTAL               |           | Vali   | dation  | Yes | Yes    | Yes |
|    | Screenline | 9                             | Validation  | A1145 Castleton     | EB        | 5110   | 5060    |     |        |     |
| 21 | 10 - NB    | 11                            | Validation  | A12 London Road     | NB        | 5390   | 1000    |     |        |     |
|    | 10 - 140   | 19                            | Validation  | A146 Beccles Road   | NEB       | 10111  | 10109   |     |        |     |
|    |            |                               |             | TOTAL               |           | Vali   | dation  | Yes | Yes    | Yes |
|    | Screenline | 10                            | Validation  | A1145 Castleton     | WB        | 5060   | 5110    |     |        |     |
| 22 | 10 - SB    | 12 Validation A12 London Road |             | SB                  | 1000      | 5390   |         |     |        |     |
|    | 10-36      | 20                            | Validation  | SWB                 | 10109     | 10111  |         | L   |        |     |
|    |            |                               |             | TOTAL               |           | Vali   | dation  | Yes | Yes    | Yes |



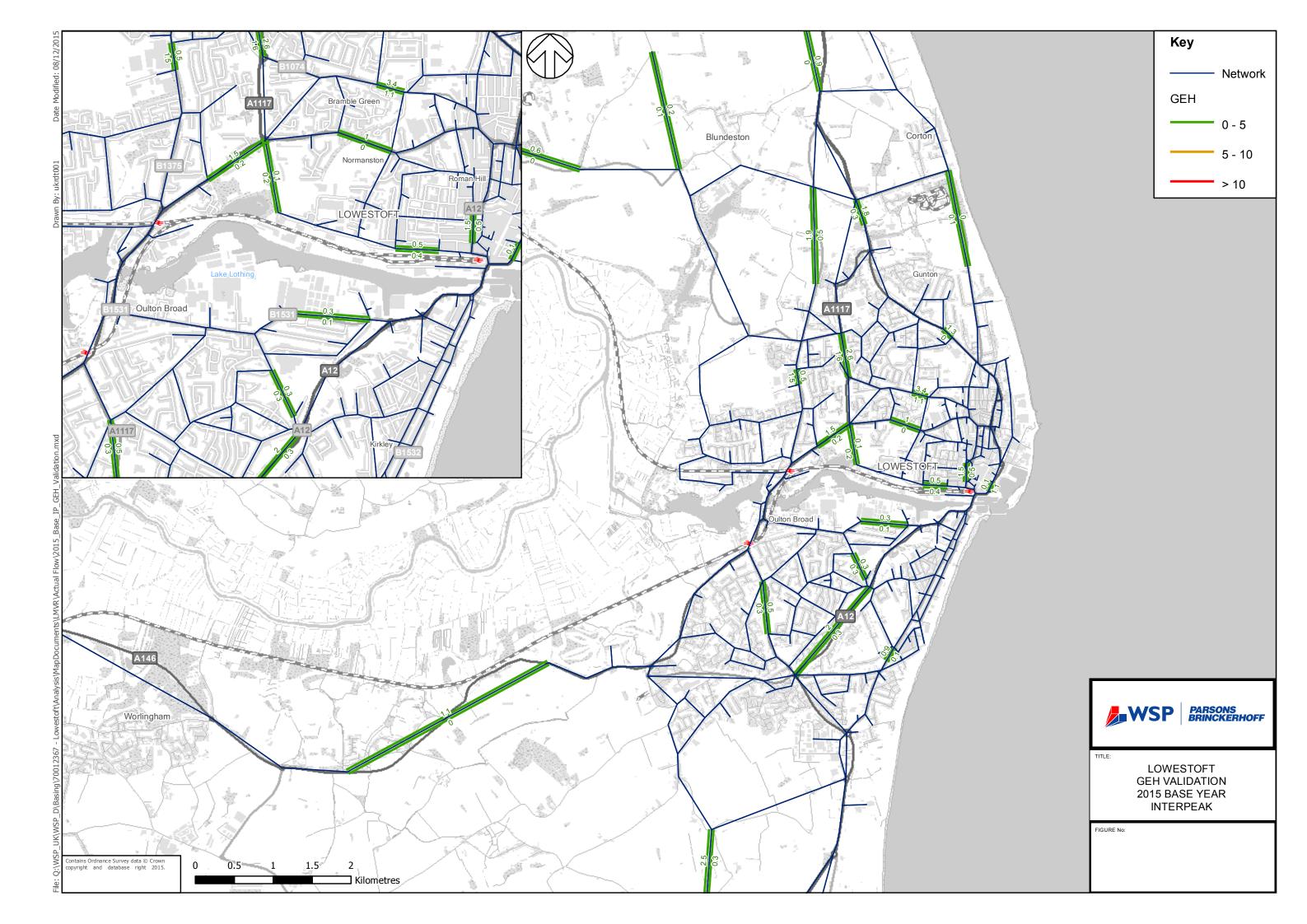
| Flow < 5% | Calib | oration | Vali | dation |
|-----------|-------|---------|------|--------|
| All       | 14    | 88%     |      | 50%    |
| Car       |       | 94%     |      | 25%    |
| LGV       |       | 44%     |      | 75%    |
| HGV       |       | 44%     |      | 0%     |

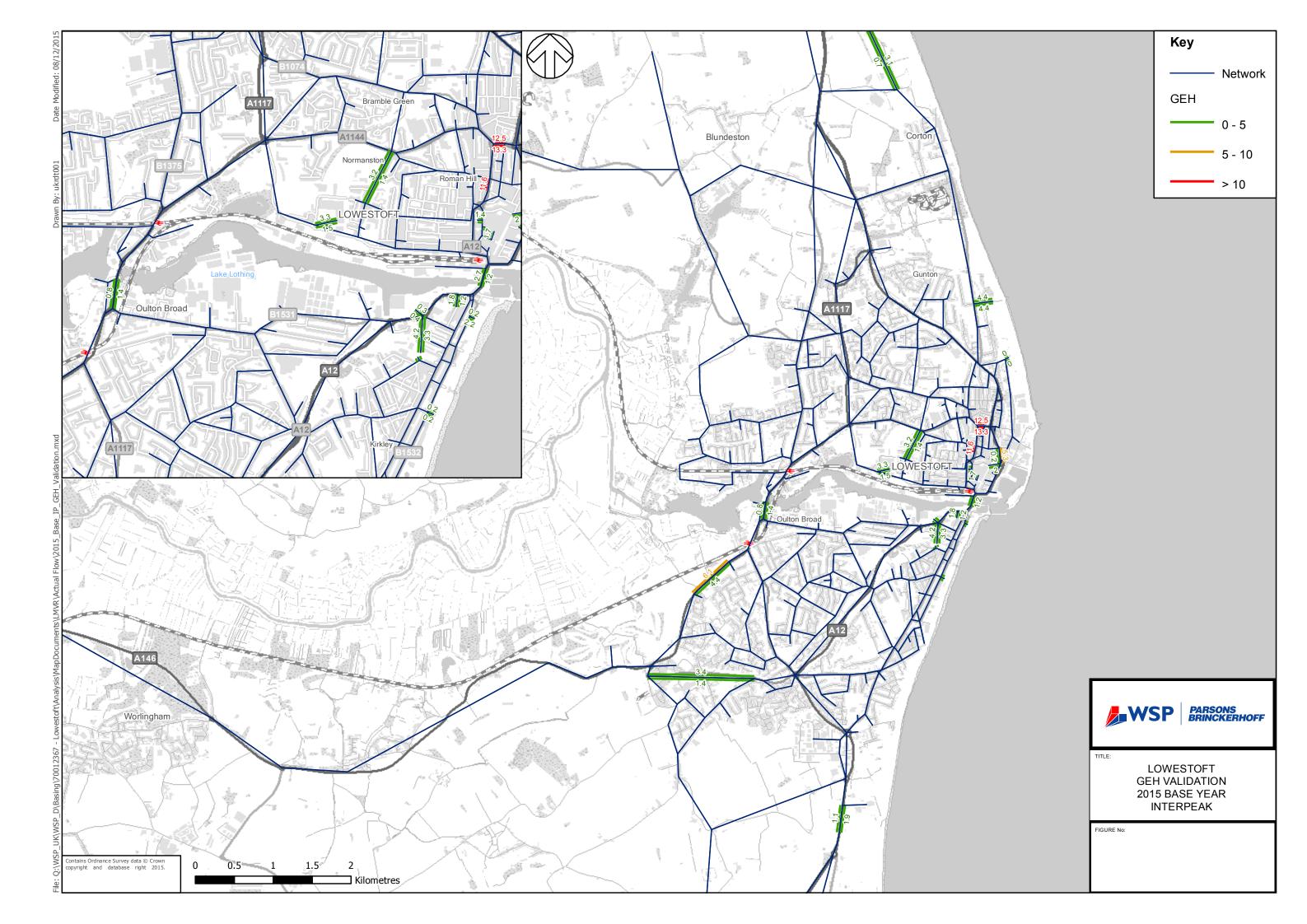
| GEH < 4 | Calib | ration | Validation |      |  |  |  |
|---------|-------|--------|------------|------|--|--|--|
| All     |       | 100%   |            | 50%  |  |  |  |
| Car     |       | 100%   |            | 50%  |  |  |  |
| LGV     |       | 94%    |            | 100% |  |  |  |
| HGV     |       | 100%   |            | 100% |  |  |  |


|                   | PM Peak           |                     |                          |                   |                   |                        |                          |                   |                   |                    |                         |                |                |                     |                         |
|-------------------|-------------------|---------------------|--------------------------|-------------------|-------------------|------------------------|--------------------------|-------------------|-------------------|--------------------|-------------------------|----------------|----------------|---------------------|-------------------------|
|                   | A                 | JI .                |                          |                   | С                 | ar                     |                          |                   | L                 | 3V                 |                         |                | Н              | ΒV                  |                         |
| Observed          | Modellad          | Difference          | CEU                      | Observed          | Modellad          | Difference             | OEH                      | Observed          | Modelled          | Difference         | CEU                     | Observed       | Modellad       | Difference          | CEN                     |
| 1443              | 1480              | 3%                  | 0.971                    | 923               | 952               | 3%                     | 0.933                    | 488               | 497               | -2%                | 0.428                   | 32             | 31             | 3%                  | 0.171                   |
| 499<br>708<br>417 | 483<br>768<br>448 | -3%<br>9%<br>7%     | 0.728<br>2.227<br>1.485  | 270<br>520<br>256 | 258<br>540<br>278 | -89%<br>-32%<br>-54%   | 0.708<br>0.891<br>1.323  | 221<br>174<br>152 | 216<br>211<br>161 | -2%<br>21%<br>6%   | 0.347<br>2.667<br>0.750 | 9<br>14<br>9   | 9<br>17<br>9   | 6%<br>21%<br>-1%    | 0.169<br>0.762<br>0.042 |
| 1624              | 1699              | 5%                  | 1.846                    | 1045              | 1076              | 3%                     | 0.940                    | 547               | 588               | -8%                | 1.732                   | 32             | 35             | -11%                | 0.585                   |
| 1114<br>1104      | 1209<br>976       | 9%<br>-12%          | 2.787<br>3.969           | 852<br>582        | 747<br>653        | -43%<br>-78%           | 3.705<br>2.877           | 228<br>499        | 440<br>308        | 93%<br>-38%        | 11.588<br>9.493         | 34<br>24       | 22<br>15       | -35%<br>-37%        | 2.274<br>2.003          |
| 2218              | 2185              | -1%                 | 0.703                    | 1433              | 1400              | -2%                    | 0.885                    | 727               | 748               | -3%                | 0.779                   | 58             | 37             | 36%                 | 3.030                   |
| 1133<br>1591      | 1017<br>1583      | -10%<br>-1%         | 3.538<br>0.201           | 749<br>1014       | 666<br>991        | -62%<br>-59%           | 3.135<br>0.730           | 370<br>539        | 331<br>557        | -11%<br>3%         | 2.095<br>0.772          | 13<br>38       | 20<br>35       | 50%<br>-8%          | 1.626<br>0.493          |
| 2724              | 2600              | -5%                 | 2.403                    | 1764              | 1657              | -6%                    | 2.576                    | 909               | 888               | 2%                 | 0.705                   | 51             | 55             | -7%                 | 0.502                   |
| 460<br>759<br>535 | 519<br>617<br>434 | 13%<br>-19%<br>-19% | 2.690<br>5.403<br>4.599  | 275<br>375<br>312 | 279<br>351<br>193 | -66%<br>-109%<br>-110% | 0.240<br>1.282<br>7.489  | 172<br>357<br>213 | 229<br>256<br>228 | 33%<br>-28%<br>7%  | 3.997<br>5.784<br>1.044 | 12<br>26<br>11 | 11<br>10<br>13 | -9%<br>-62%<br>21%  | 0.331<br>3.771<br>0.653 |
| 1753              | 1570              | -10%                | 4.501                    | 962               | 823               | -14%                   | 4.667                    | 742               | 713               | 4%                 | 1.081                   | 49             | 34             | 30%                 | 2.311                   |
| 448<br>775<br>491 | 497<br>794<br>186 | 11%<br>2%<br>-62%   | 2.278<br>0.683<br>16.562 | 255<br>460<br>332 | 196<br>512<br>67  | -99%<br>-57%<br>-128%  | 3.921<br>2.365<br>18.774 | 180<br>294<br>148 | 283<br>272<br>112 | 57%<br>-8%<br>-24% | 6.751<br>1.316<br>3.168 | 12<br>21<br>10 | 18<br>10<br>7  | 45%<br>-52%<br>-32% | 1.443<br>2.764<br>1.107 |
| 1713              | 1477              | -14%                | 5.909                    | 1047              | 775               | -26%                   | 9.011                    | 623               | 667               | -7%                | 1.752                   | 43             | 35             | 20%                 | 1.354                   |

# Appendix E

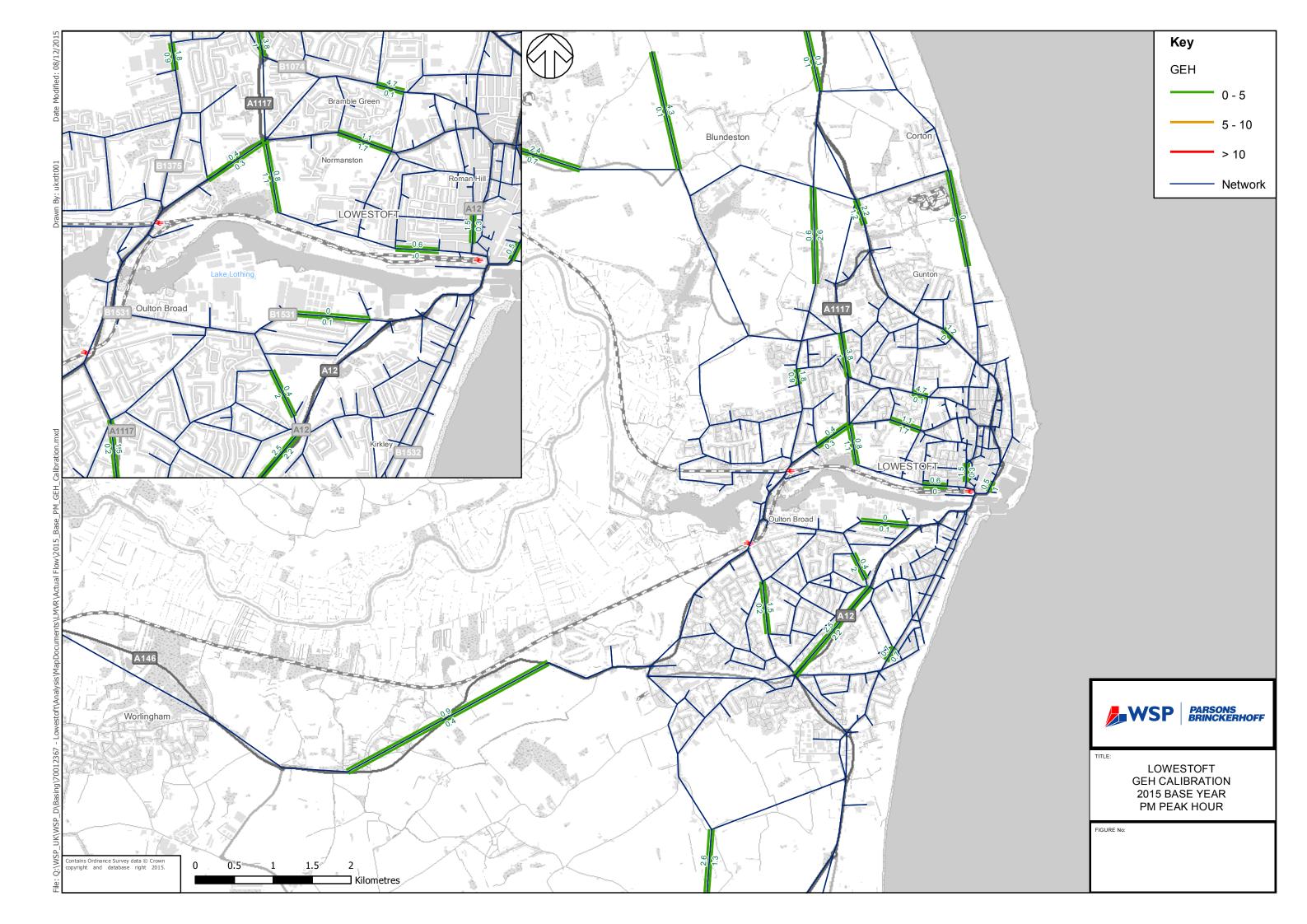
INDIVIDUAL LINK COUNT PERFORMANCE

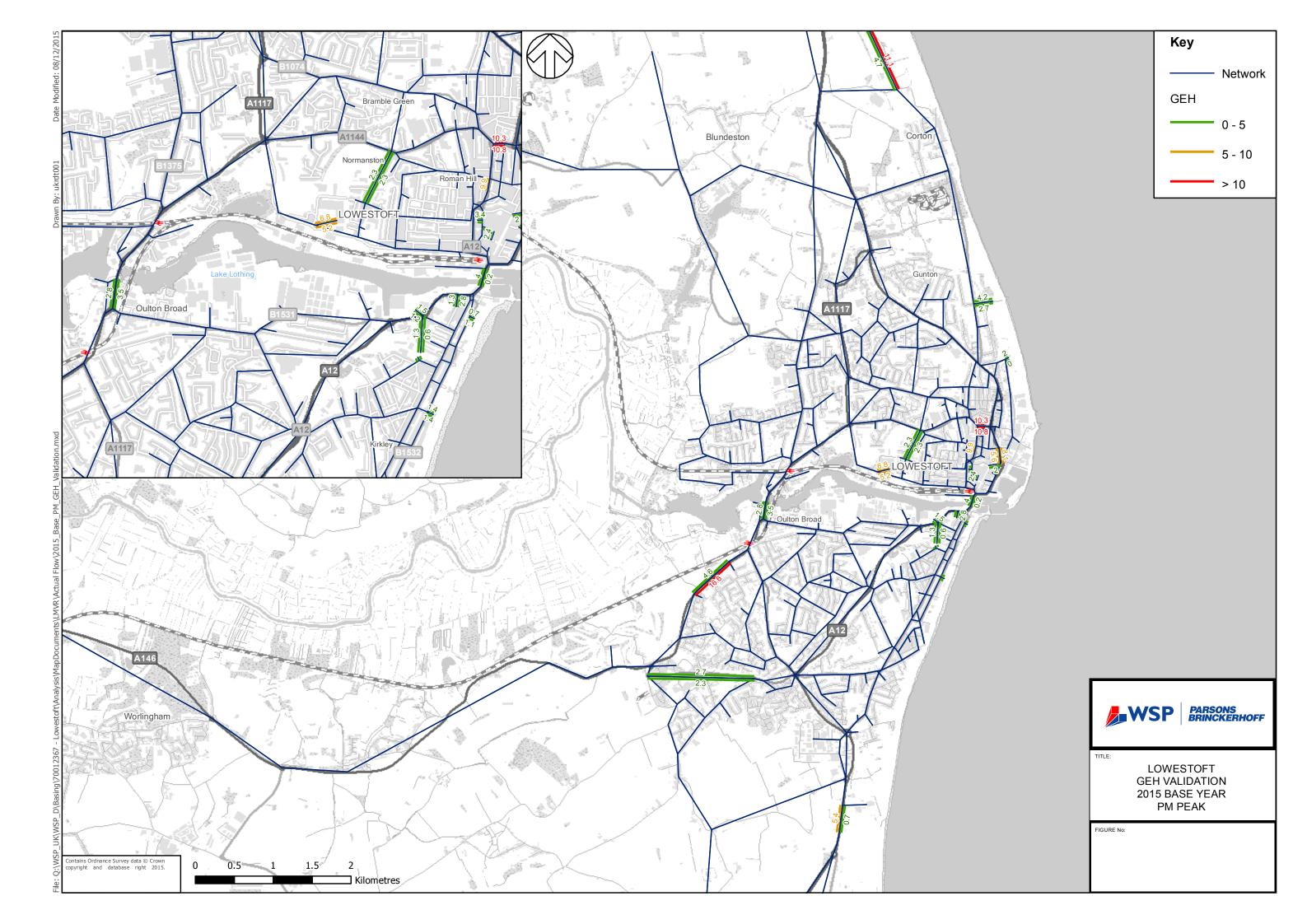

| ID         | Calibration /<br>Validation | Area | ID         | Site Location                                              | Dir           | Date             | Data Type     | Duplicate? | Ref                  | A-Node        | B-Node         | Factor | AM<br>Peak | Interp<br>eak | PM<br>Peak | Check    |
|------------|-----------------------------|------|------------|------------------------------------------------------------|---------------|------------------|---------------|------------|----------------------|---------------|----------------|--------|------------|---------------|------------|----------|
| 5          | Calibration                 |      | 3          | Gisleham Road                                              | NB            | Jul-15           | ATC           | No         | 600-501              | 9600          | 5010           |        | Yes        | Yes           | Yes        | OK       |
| 6          | Calibration                 |      | 3          | Gisleham Road                                              | SB            | Jul-15           | ATC           | No         | 010-960              | 5010          | 9600           |        | Yes        | Yes           | Yes        | OK       |
| 7<br>8     | Calibration<br>Calibration  |      | 4          | A146 Beccles Road<br>A146 Beccles Road                     | EB<br>WB      | Jul-15<br>Jul-15 | ATC<br>ATC    | No<br>No   | 1514-451<br>1513-451 | 4514<br>4513  | 4513<br>4514   |        | Yes        | Yes<br>Yes    | Yes        | OK<br>OK |
| 9          | Validation                  |      | 5          | A1145 Castleton Avenue                                     | EB            | Jul-15           | ATC           | No         | 5110-506             | 5110          | 5060           |        | Yes        | Yes           | Yes        | OK       |
| 10         | Validation                  |      | 5          | A1145 Castleton Avenue                                     | WB            | Jul-15           | ATC           | No         | 060-511              | 5060          | 5110           |        | Yes        | Yes           | Yes        | OK       |
| 11         | Validation                  |      | 6          | A12 London Road                                            | NB            | Jul-15           | ATC           | No         | 390-100              | 5390          | 1000           |        | Yes        | Yes           | Yes        | OK       |
| 12<br>13   | Validation<br>Calibration   |      | 6<br>7     | A12 London Road<br>London Road South                       | SB<br>NEB     | Jul-15<br>Jul-15 | ATC<br>ATC    | No<br>No   | 1000-539<br>9606-104 | 1000          | 5390<br>1040   |        | Yes        | Yes           | Yes        | OK<br>OK |
| 14         | Calibration                 |      | 7          | London Road South                                          | SWB           | Jul-15           | ATC           | No         | 1040-960             | 1040          | 9606           |        | Yes        | Yes           | Yes        | OK       |
| 15         | Calibration                 |      | 8          | A12 Tom Crisp Way                                          | NEB           | Jul-15           | ATC           | No         | 000-1001             | 3000          | 10015          |        | Yes        | Yes           | Yes        | OK       |
| 16         | Calibration                 |      | 8          | A12 Tom Crisp Way                                          | SWB           | Jul-15           | ATC           | No         | 0015-300             | 10015         | 3000           |        | Yes        | Yes           | Yes        | OK       |
| 17<br>18   | Calibration<br>Calibration  |      | 9          | A1117 Elm Tree Road<br>A1117 Elm Tree Road                 | NB<br>SB      | Jul-15<br>Jul-15 | ATC<br>ATC    | No<br>No   | 8030-304<br>8040-303 | 3030          | 3040<br>3030   |        | Yes        | Yes<br>Yes    | Yes        | OK<br>OK |
| 19         | Validation                  |      | 10         | A146 Beccles Road                                          | NEB           | Jul-15           | ATC           | No         | 0111-101             | 10111         | 10109          |        | Yes        | Yes           | Yes        | OK       |
| 20         | Validation                  |      | 10         | A146 Beccles Road                                          | SWB           | Jul-15           | ATC           | No         | 0109-101             | 10109         | 10111          |        | Yes        | Yes           | Yes        | OK       |
| 21         | Calibration                 |      | 11         | Kirkley Run                                                | NWB           | Jul-15           | ATC           | No         | 0103-527             | 10103         | 5270           |        | Yes        | Yes           | Yes        | OK       |
| 22         | Calibration<br>Calibration  |      | 11         | Kirkley Run<br>A146 Waveney Drive                          | SEB<br>EB     | Jul-15<br>Jul-15 | ATC<br>ATC    | No<br>No   | 270-1010<br>0088-401 | 5270<br>10088 | 10103<br>4010  |        | Yes<br>Yes | Yes<br>Yes    | Yes<br>Yes | OK<br>OK |
| 24         | Calibration                 |      | 12         | A146 Waveney Drive                                         | WB            | Jul-15           | ATC           | No         | 010-1008             | 4010          | 10088          |        | Yes        | Yes           | Yes        | OK       |
| 29         | Calibration                 |      | 15         | Katwijk Way                                                | NB            | Jul-15           | ATC           | No         | 040-1013             | 6040          | 10136          |        | Yes        | Yes           | Yes        | OK       |
| 30         | Calibration                 |      | 15         | Katwijk Way                                                | SB            | Jul-15           | ATC           | No         | 0136-604             | 10136         | 6040           |        | Yes        | Yes           | Yes        | OK       |
| 31<br>32   | Calibration<br>Calibration  |      | 16<br>16   | A12 Battery Green Road A12 Battery Green Road              | NB<br>SB      | Jul-15<br>Jul-15 | ATC<br>ATC    | No<br>No   | 6160-615<br>6150-616 | 6160          | 6150<br>6160   |        | Yes        | Yes           | Yes        | OK<br>OK |
| 33         | Validation                  |      | 17         | A12 Old Nelson Street                                      | NB            | Jul-15           | ATC           | No         | 140-613              | 6140          | 6130           |        | Yes        | Yes           | Yes        | OK       |
| 34         | Validation                  |      | 17         | A12 Old Nelson Street                                      | SB            | Jul-15           | ATC           | No         | 130-614              | 6130          | 6140           |        | Yes        | Yes           | Yes        | OK       |
| 35         | Validation                  |      | 18         | St Peter's Street                                          | EB            | Jul-15           | ATC           | No         | 070-607              | 6070          | 6075           |        | Yes        | Yes           | Yes        | OK       |
| 36<br>37   | Validation<br>Calibration   |      | 18<br>19   | St Peter's Street  Denmark Road                            | WB<br>EB      | Jul-15<br>Jul-15 | ATC<br>ATC    | No<br>No   | 6075-607<br>200-1013 | 6075          | 6070<br>10139  |        | Yes        | Yes<br>Yes    | Yes        | OK<br>OK |
| 38         | Calibration                 |      | 19         | Denmark Road  Denmark Road                                 | WB            | Jul-15<br>Jul-15 | ATC           | No         | 0139-720             | 10139         | 7200           |        | Yes        | Yes           | Yes        | OK       |
| 39         | Validation                  |      | 20         | Rotterdam Road                                             | NEB           | Jul-15           | ATC           | No         | 7210-913             | 7210          | 9130           |        | Yes        | Yes           | Yes        | OK       |
| 40         | Validation                  |      | 20         | Rotterdam Road                                             | SWB           | Jul-15           | ATC           | No         | 9130-721             | 9130          | 7210           |        | Yes        | Yes           | Yes        | OK       |
| 41         | Calibration<br>Calibration  |      | 21         | Peto Way Peto Way                                          | NB            | Jul-15<br>Jul-15 | ATC           | No         | 0190-706             | 10190         | 7060           |        | Yes        | Yes           | Yes        | OK<br>OK |
| 42<br>43   | Calibration                 |      | 22         | A1117 Normanston Drive                                     | SB<br>NEB     | Jul-15<br>Jul-15 | ATC<br>ATC    | No<br>No   | 060-1019<br>7050-706 | 7060<br>7050  | 10190<br>7060  |        | Yes        | Yes<br>Yes    | Yes        | OK       |
| 44         | Calibration                 |      | 22         | A1117 Normanston Drive                                     | SWB           | Jul-15           | ATC           | No         | 7060-705             | 7060          | 7050           |        | Yes        | Yes           | Yes        | OK       |
| 45         | Calibration                 |      | 23         | A1144 Normanston Drive                                     | EB            | Jul-15           | ATC           | No         | 240-913              | 9240          | 9130           |        | Yes        | Yes           | Yes        | OK       |
| 46         | Calibration                 |      | 23         | A1144 Normanston Drive Oulton Road                         | WB            | Jul-15           | ATC           | No         | 9130-924             | 9130          | 9240           |        | Yes        | Yes           | Yes        | OK       |
| 47<br>48   | Calibration<br>Calibration  |      | 24         | Oulton Road Oulton Road                                    | EB<br>WB      | Jul-15<br>Jul-15 | ATC<br>ATC    | No<br>No   | 270-1001<br>0010-927 | 9270          | 10010<br>9270  | 1      | Yes        | Yes           | Yes        | OK<br>OK |
| 49         | Calibration                 |      | 25         | B1375 Gorleston Road                                       | NB            | Jul-15           | ATC           | No         | 8030-804             | 8030          | 8040           |        | Yes        | Yes           | Yes        | OK       |
| 50         | Calibration                 |      | 25         | B1375 Gorleston Road                                       | SB            | Jul-15           | ATC           | No         | 8040-803             | 8040          | 8030           |        | Yes        | Yes           | Yes        | OK       |
| 51         | Calibration                 |      | 26         | A1117 Millennium Way                                       | NB            | Jul-15           | ATC           |            | 7070-708             | 7070          | 7080           |        | Yes        | Yes           | Yes        | OK       |
| 52<br>53   | Calibration<br>Calibration  |      | 26<br>27   | A1117 Millennium Way A12 Yarmouth Road                     | SB<br>NWB     | Jul-15<br>Jul-15 | ATC<br>ATC    | No<br>No   | 7080-707<br>0242-102 | 7080<br>10242 | 7070<br>10248  |        | Yes        | Yes<br>Yes    | Yes        | OK<br>OK |
| 54         | Calibration                 |      | 27         | A12 Yarmouth Road                                          | SEB           | Jul-15           | ATC           |            | 0248-102             | 10248         | 10242          |        | Yes        | Yes           | Yes        | OK       |
| 55         | Calibration                 |      | 28         | B1385 Corton Road                                          | NB            | Jul-15           | ATC           | No         | 9460-948             | 9460          | 9480           |        | Yes        | Yes           | Yes        | OK       |
| 56         | Calibration                 |      | 28         | B1385 Corton Road                                          | SB            | Jul-15           | ATC           | No         | 9480-946             | 9480          | 9460           |        | Yes        | Yes           | Yes        | OK       |
| 57<br>58   | Calibration<br>Calibration  |      | 29<br>29   | A12 Yarmouth Road A12 Yarmouth Road                        | NB<br>SB      | Jul-15<br>Jul-15 | ATC<br>ATC    | No<br>No   | 0257-625<br>250-1025 | 10257<br>6250 | 6250<br>10257  |        | Yes        | Yes<br>Yes    | Yes        | OK<br>OK |
| 59         | Calibration                 |      | 30         | B1375 Parkhill                                             | NB            | Jul-15           | ATC           | No         | 0001-807             | 10001         | 8070           |        | Yes        | Yes           | Yes        | OK       |
| 60         | Calibration                 |      | 30         | B1375 Parkhill                                             | SB            | Jul-15           | ATC           | No         | 070-1000             | 8070          | 10001          |        | Yes        | Yes           | Yes        | OK       |
| 61         | Calibration                 |      | 31         | B1074 Bluderston Road                                      | NB            | Jul-15           | ATC           | No         | 0025-200             | 10025         | 20026          |        | Yes        | Yes           | Yes        | OK       |
| 62<br>63   | Calibration<br>Calibration  |      | 31         | B1074 Bluderston Road<br>Fixton Road                       | SB<br>NB      | Jul-15<br>Jul-15 | ATC<br>ATC    | No<br>No   | 0026-100<br>440-1002 | 20026         | 10025<br>10024 |        | Yes        | Yes           | Yes        | OK<br>OK |
| 64         | Calibration                 |      | 32         | Fixton Road                                                | SB            | Jul-15           | ATC           | No         | 0024-944             | 10024         | 9440           |        | Yes        | Yes           | Yes        | OK       |
| 65         | Validation                  |      | 33         | Coast Road                                                 | NB            | Jul-15           | ATC           | No         | 510-1002             | 9510          | 10027          |        | Yes        | Yes           | Yes        | OK       |
| 66         | Validation                  |      | 33         | Coast Road                                                 | SB            | Jul-15           | ATC           | No         | 0027-951             | 10027         | 9510           |        | Yes        | Yes           | Yes        | OK       |
| 67<br>75   | Validation<br>Calibration   | 0    | 6/605<br>3 | Katwijk Way A12YarmouthRd                                  | NB<br>NB      | Jul-13<br>Jul-15 | TRADS<br>ANPR | No<br>No   | 7280-606<br>3280-452 | 7280<br>6280  | 6060<br>4520   |        | Yes        | Yes<br>Yes    | Yes        | OK<br>OK |
| 76         | Calibration                 |      | 3          | A12YarmouthRd                                              | SB            | Jul-15           | ANPR          | No         | 1520-628             | 4520          | 6280           |        | Yes        | Yes           | Yes        | OK       |
| 79         | Validation                  |      | 5          | A12 Pier Terrace                                           | NB            | Jul-15           | ANPR          | No         | 260-1002             | 1260          | 10023          |        | Yes        | Yes           | Yes        | OK       |
| 80         | Validation                  |      | 5          | A12 Pier Terrace                                           | SB            | Jul-15           | ANPR          | No<br>No   | 0023-126             | 10023         | 1260           |        | Yes        | Yes           | Yes        | OK       |
| 81<br>82   | Validation<br>Validation    |      | 6          | Saltwater Way Saltwater Way                                | NB<br>SB      | Jul-15<br>Jul-15 | ANPR<br>ANPR  | No<br>No   | 2050-206<br>2060-205 | 2050          | 2060<br>2050   |        | Yes<br>Yes | Yes<br>Yes    | Yes        | OK<br>OK |
| 99         | Validation                  |      | 15         | North Quay Retail Park                                     | Entry         | Jul-15           | ANPR          | No         | 9220-923             | 9220          | 9230           |        | Yes        | Yes           | Yes        | OK       |
| 100        | Validation                  |      | 15         | North Quay Retail Park                                     | Exit          | Jul-15           | ANPR          | No         | 9230-922             | 9230          | 9220           |        | Yes        | Yes           | Yes        | OK       |
| 101        | Validation                  |      | 16         | Links Road Car Park                                        | EB            | Jul-15           | ANPR          |            | 9602-960             | 9602          | 9603           |        | Yes        | Yes           | Yes        | OK       |
| 102        | Validation<br>Validation    |      | 16<br>17   | Links Road Car Park Swimming Pool Road Car Park            | WB<br>EB      | Jul-15<br>Jul-15 | ANPR<br>ANPR  | No<br>No   | 9603-960<br>090-1025 | 9603          | 9602<br>10251  |        | Yes        | Yes           | Yes        | OK<br>OK |
| 104        | Validation                  |      | 17         | Swimming Pool Road Car Park                                | WB            | Jul-15           | ANPR          | No         | 0251-909             | 10251         | 9090           |        | Yes        | Yes           | Yes        | OK       |
| 106        | Validation                  |      | 18         | Battery Green Road Car Park                                | Exit          | Jul-15           | ANPR          | No         | 0127-101             | 10127         | 10126          |        | Yes        | Yes           | Yes        | OK       |
| 107        | Validation                  |      | 19         | Gordon Road Car Park Entry                                 | Entry         | Jul-15           | ANPR          | No<br>No   | 140-905              | 6140          | 9050           |        | Yes        | Yes           | Yes        | OK       |
| 109<br>112 | Validation<br>Validation    |      | 20         | Surrey Street Car Park Entry<br>Clapham Road Car Park Exit | Entry         | Jul-15<br>Jul-15 | ANPR<br>ANPR  | No<br>No   | 0130-101<br>0132-101 | 10130         | 10131<br>10133 |        | Yes<br>Yes | Yes           | Yes<br>Yes | OK<br>OK |
| 113        | Validation                  |      | 22         | Clapham Road South                                         | Entry         | Jul-15           | ANPR          | No         | 0137-101             | 10137         | 10138          |        | Yes        | Yes           | Yes        | OK       |
| 114        | Validation                  |      | 22         | Clapham Road South                                         | Exit          | Jul-15           | ANPR          | No         | 0138-101             | 10138         | 10137          |        | Yes        | Yes           | Yes        | OK       |
| 115        | Validation<br>Validation    |      | 23         | St Johns Road Car Park                                     | Entry         | Jul-15           | ANPR          |            | 0083-100             | 10083         | 10084          |        | Yes        | Yes           | Yes        | OK       |
| 116<br>117 | Validation<br>Validation    |      | 23<br>24a  | St Johns Road Car Park Kirkley Rise Car Park               | Exit          | Jul-15<br>Jul-15 | ANPR<br>ANPR  |            | 0084-100<br>000-1025 | 10084         | 10083<br>10256 |        | Yes        | Yes           | Yes        | OK<br>OK |
| 118        | Validation                  |      | 24a        | Kirkley Rise Car Park                                      | Exit          | Jul-15<br>Jul-15 | ANPR          | No         | 0256-400             | 10256         | 4000           |        | Yes        | Yes           | Yes        | OK       |
| 119        | Validation                  |      | 24b        | Kirkley Rise Car Park                                      | Entry         | Jul-15           | ANPR          | No         | 300-1007             | 5300          | 10078          |        | Yes        | Yes           | Yes        | OK       |
| 120        | Validation                  |      | 24b        | Kirkley Rise Car Park                                      | Exit          | Jul-15           | ANPR          | No         | 0078-530             | 10078         | 5300           |        | Yes        | Yes           | Yes        | OK       |
| 121<br>122 | Validation<br>Validation    |      | 25<br>25   | Kirkley Cliff Road Car Park Kirkley Cliff Road Car Park    | Entry<br>Exit | Jul-15<br>Jul-15 | ANPR<br>ANPR  | No<br>No   | 120-1007<br>0075-112 | 1120          | 10075<br>1120  | -      | Yes        | Yes<br>Yes    | Yes        | OK<br>OK |
| 125        | Validation                  |      | 27         | Marine Parade                                              | Entry         | Jul-15<br>Jul-15 | ANPR          |            | 0075-112             | 10075         | 10082          |        | Yes        | Yes           | Yes        | OK       |
| 126        | Validation                  |      | 27         | Marine Parade                                              | Exit          | Jul-15           | ANPR          | No         | 0082-100             | 10082         | 10081          |        | Yes        | Yes           | Yes        | OK       |
| 127        | Validation                  |      | 28         | Asda Car Park                                              | Entry         | Jul-15           | ANPR          | No         | 000-1008             | 4000          | 10085          |        | Yes        | Yes           | Yes        | OK       |
| 128        | Validation                  |      | 28         | Asda Car Park                                              | Exit          | Jul-15           | ANPR          | No         | 0085-400             | 10085         | 4000           |        | Yes        | Yes           | Yes        | OK       |
|            |                             |      |            |                                                            |               |                  |               |            |                      |               |                |        |            |               |            |          |


| Column     Column     Column     Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Column   Colu   |          |          |             |            |             |          |          |       | Peak      |            |          |          |       |          |          |       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|-------------|------------|-------------|----------|----------|-------|-----------|------------|----------|----------|-------|----------|----------|-------|
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |          | ALL VEHICLE | ES         | •           |          |          | CAR   |           |            |          | LGV      |       |          | HGV      |       |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Observed | Madellad | CELL        | OFH Person | Flow Boss 2 | Observed | Madellad | CELL  | OFH Bases | Flow Bosso | Observed | Madellad | OFIL  | Observed | Madellad | CELL  |
| 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Observed | Modelled | GEH         | GER Pass?  | Flow Pass?  | Observed | Modelled | GER   | GER Pass? | Flow Pass? | Observed | wodelled | GER   | Observed | wodelied | GEH   |
| 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 21       | 5        | 4.360       | Yes        | Yes         | 6        | 3        | 1.308 | Yes       | Yes        | 14       | 1        | 4.663 | 1        | 1        | 0.250 |
| Fig.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |          |             |            |             |          |          |       |           |            |          | 9        |       |          | 3        |       |
| 441 3869 2766 V66 V66 V67 2772 280 282 3.800 V66 V66 V66 1260 128 2.201 382 3.50 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.2 | 639      |          | 0.000       |            |             |          |          | 0.000 |           |            | 312      | 312      | 0.000 | 60       |          | 0.000 |
| 1950   1967   1968   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969      |          |          |             |            |             |          |          |       |           |            |          |          |       |          |          |       |
| Prop.   Prop   |          |          |             |            |             |          |          |       |           |            |          |          |       |          |          |       |
| ## Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |          |             |            |             |          |          |       |           |            |          |          |       |          |          |       |
| GEO   CAST   C   |          |          |             |            |             |          |          |       |           |            |          |          |       |          |          |       |
| 1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969   1969      |          |          |             |            |             |          |          |       |           |            |          |          |       |          |          |       |
| SEC   199   0.454   Yes   Yes   1620   199   0.447   Yes   Yes   172   172   0.000   29   29   0.000   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   180   |          |          |             |            |             |          |          |       |           |            |          |          |       |          |          |       |
| 361   361   361   362   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363   363    |          |          |             |            |             |          |          |       |           |            |          |          |       |          |          |       |
| 200   203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |          |             |            |             |          |          |       |           |            | 111      |          |       |          |          |       |
| 1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975   1975      | 310      | 309      | 0.043       | Yes        | Yes         |          |          | 0.039 | Yes       | Yes        |          |          |       | 18       | 18       | 0.088 |
| SS   192   1920   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190   190    |          |          |             |            |             |          |          |       |           |            |          |          |       |          |          |       |
| 129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |          |             |            |             |          |          |       |           |            |          |          |       |          |          |       |
| General Color   Print   Prin   |          |          |             |            |             |          |          |       |           |            |          |          |       |          |          |       |
| 344                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |          |             |            |             |          |          |       |           |            |          |          |       |          |          |       |
| 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |          |             |            |             |          |          |       |           |            |          |          |       |          |          |       |
| 411   364   2388   Yes   Yes   261   231   1500   Yes   Yes   122   197   1377   288   280   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448   0.448     |          |          |             |            |             |          |          |       |           |            |          |          |       |          |          |       |
| GFT    |          |          |             |            |             |          |          |       |           |            |          |          |       |          |          |       |
| STI   STO   CO.031   Vest   Vest   SST   SST   SST   SST   SST   Vest   Vest   SST   SST   SST   SST   SST   SST   Vest   | 134      | 123      | 0.970       | Yes        | Yes         | 87       | 87       |       | Yes       | Yes        | 34       | 34       | 0.029 | 13       | 2        | 4.093 |
| 144   943   2,915   No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |          |             |            |             |          |          |       |           |            |          |          |       |          |          |       |
| Add                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |          |             |            |             |          |          |       |           |            |          |          |       |          |          |       |
| Sept                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |          |             |            |             |          |          |       |           |            |          |          |       |          |          |       |
| 196                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |          |             |            |             |          |          |       |           |            |          |          |       |          |          |       |
| 215   214   0.038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |          |             |            |             |          |          |       |           |            |          |          |       |          |          |       |
| 304   342   2.133   Ves.   Ves.   Ves.   262   227   1.715   Ves.   Ves.   590   103   1.300   12   12   12   0.130   136   117   1.706   Ves.   Ves.   76   30   1.586   Ves.   Ves.   73   23   5.044   3   4   0.036   28   28   28   28   28   28   28   2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |          |             |            |             |          |          |       |           |            |          |          |       |          |          |       |
| 136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |          |             |            |             |          |          |       |           |            |          |          |       |          |          |       |
| 3986   388                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 136      | 117      | 1.708       | Yes        | Yes         | 76       | 90       | 1.588 | Yes       | Yes        | 57       | 23       | 5.404 |          | 4        | 0.288 |
| 317   226                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |          |             |            |             |          |          |       |           |            |          |          |       |          |          |       |
| 687   689   0.471   Ves                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |          |             |            |             |          |          |       |           |            |          |          |       |          |          |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          |             |            |             |          |          |       |           |            |          |          |       |          |          |       |
| 408                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |          |             |            |             |          |          |       |           |            |          |          |       |          |          |       |
| 190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |          |             |            |             |          |          |       |           |            |          |          |       |          |          |       |
| 476 377 4780 Yes Yes Yes 149 149 1000 Yes Yes 201 103 7010 12 11 10.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |          |             |            |             |          |          |       |           |            |          |          |       |          |          |       |
| 246         246         268         Yes         Yes         149         449         0.009         Yes         Yes         90         90         0.023         8         7         0.206           584         582         0.058         Yes         Yes         455         453         0.112         Yes         Yes         Yes         160         0.003         18         2         0.003         18         2         0.003         18         0.003         16         0.003         16         0.003         16         0.003         16         0.003         18         0.003         16         0.003         18         0.003         18         0.003         18         0.003         18         18         0.003         18         18         0.003         18         18         0.003         18         18         0.003         18         18         0.003         18         18         18         0.003         18         18         0.003         18         18         18         0.003         18         18         0.003         18         18         0.003         18         18         0.003         18         18         0.003         18         18 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |          |             |            |             |          |          |       |           |            |          |          |       |          |          |       |
| 484         482         0.078         Yes         Yes         291         91         91         91         0.030         16         16         0.108           376         378         0.124         Yes         Yes         298         298         298         0.003         Yes         Yes         60         60         0.052         22         20         0.009           480         485         0.054         Yes         Yes         488         229         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 246      |          |             |            |             |          |          | 0.009 |           |            |          |          |       |          |          |       |
| 378                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |          |             |            |             |          |          |       |           |            |          |          |       |          |          |       |
| 450         455         0.254         Yes         Yes         375         379         0.206         Yes         Yes         598         60         0.156         16         16         0.050           460         460         760         Yes         Yes         401         401         0.017         Yes         Yes         139         1.000         23         2.27         0.000           661         595         2.248         Yes         401         401         0.017         Yes         14         14         0.03         1         1         0.000           102         101         0.062         Yes         16         81         82         0.017         Yes         Yes         20         20         20         0.003         1         1         0.000           102         101         0.062         Yes         461         82         0.065         Yes         Yes         20         20         20         20         0.003         1         1         0.000           461         434         1.284         Yes         364         378         0.007         Yes         461         43         2.271         1         1 <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |          |             |            |             |          |          |       |           |            |          |          |       |          |          |       |
| 460                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |          |             |            |             |          |          |       |           |            |          |          |       |          |          |       |
| 661 5965                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |          |             |            |             |          |          |       |           |            |          |          |       |          |          |       |
| 96 97 0.089 Yes Yes 81 82 0.111 Yes Yes 14 14 0.033 1 1 0.090 102 101 0.062 Yes Yes 81 80 0.056 Yes Yes 20 20 0.066 1 1 0.344 567 656 0.047 Yes Yes 456 456 0.012 Yes Yes 88 84 0.022 27 26 0.122 567 647 3.262 Yes Yes 456 456 0.012 Yes Yes 132 133 0.120 24 24 0.076 461 434 1.284 Yes Yes 384 378 0.307 Yes Yes 64 33 2.271 133 13 0.046 461 434 1.284 Yes Yes 178 198 1.304 Yes Yes 86 65 0.041 8 8 0.117 113 102 0.854 Yes Yes 104 108 108 1.304 Yes Yes 65 65 0.041 8 8 0.117 113 122 0.854 Yes Yes 104 108 108 1.304 Yes Yes 94 0.000 5 5 5 0.110 51 52 0.033 Yes Yes Yes 8 9 0.012 Yes Yes 38 99 0.027 4 4 0.084 84 85 0.109 Yes Yes 8 9 0.024 Yes Yes 38 99 0.027 4 4 0.084 85 0.109 Yes Yes 8 9 0.024 Yes Yes 38 99 0.027 4 4 0.084 86 85 0.109 Yes Yes 8 9 10 0.024 Yes Yes 38 99 0.027 4 4 0.084 87 88 1 88 1 0.09 Yes Yes 8 11 28 3.333 Yes Yes Yes 39 18 0.033 3 3 0.095 414 99 19 0.668 No No 381 85 19.592 No No 18 12 1.549 15 2 0 0.004 1633 1353 1353 0.000 Yes Yes Yes 118 26 3.333 Yes Yes Yes 135 0.000 44 44 0.0004 1633 1353 1353 0.000 Yes Yes Yes 118 0.037 Yes Yes 135 0.000 44 44 0.0004 1633 1359 0.000 Yes Yes Yes 9 11 28 0.333 Yes Yes Yes 135 0.000 44 44 0.0004 1633 1359 0.000 Yes Yes Yes 9 11 28 0.037 Yes Yes 135 0.000 44 44 0.0004 1633 1359 0.000 Yes Yes Yes 9 11 28 0.037 Yes Yes 135 0.000 44 44 0.0004 1633 1359 0.000 Yes Yes Yes 9 18 0.037 Yes Yes 135 0.000 44 44 0.0000 1633 1359 0.000 Yes Yes Yes 9 18 0.037 Yes Yes 135 0.000 44 44 0.0000 164 0.000 Yes Yes Yes 9 18 0.000 Yes Yes Yes 135 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.0000 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  |          |          |             |            |             |          |          |       |           |            |          |          |       |          |          |       |
| 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |          |             |            |             |          |          |       |           |            |          |          |       |          |          |       |
| Seff      |          |          |             |            |             |          |          |       |           |            |          |          |       |          |          |       |
| 461                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 567      | 566      |             |            |             | 456      | 456      | 0.012 |           |            | 85       | 84       |       | 27       | 26       | 0.122 |
| 251   269                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |          |             |            |             |          |          |       |           |            |          |          |       |          |          |       |
| 179                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |          |             |            |             |          |          |       |           |            |          |          |       |          |          |       |
| 113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |          |             |            |             |          |          |       |           |            |          |          |       |          |          |       |
| 51         52         0.093         Yes         Yes         9         9         0.112         Yes         Yes         39         39         0.027         4         4         0.084           84         85         0.109         Yes         Yes         8         8         77         10.584         No         Yes         51         6         8.433         2         0         1.871           50         38         1.309         Yes         Yes         11         26         3.383         Yes         Yes         37         12         4.975         2         0         2.062         414         99         19.668         No         No         381         85         19.392         No         No         18         12         1.549         15         2         0         2.062         4.459         932         9333         0.033         Yes         Yes         76         747         0.037         Yes         Yes         135         135         0.000         44         44         0.000         1353         1353         0.000         Yes         Yes         135         135         0.000         44         44         0.000         1353                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          |             |            |             |          |          |       |           |            |          |          |       |          |          |       |
| 84         85         0.109         Yes         Yes         8         9         0.224         Yes         Yes         T3         73         0.039         3         3         0.085           61         83         2.699         Yes         Yes         11         26         3.333         Yes         Yes         37         12         4.975         2         0         2.062           414         99         19.668         No         No         381         185         19.392         No         No         18         12         4.975         2         0         2.062         9.33         0.033         Yes         Yes         747         0.037         Yes         Yes         142         1.900         44         44         0.000           1353         3.000         Yes         Yes         178         178         178         178         0.000         441         44         0.000         441         44         0.000         441         44         0.000         441         442         0.000         441         441         442         0.000         441         448         142         142         0.000         441         441 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |          |             |            |             |          |          |       |           |            |          |          |       |          |          |       |
| 61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |          |             |            |             |          |          |       |           |            |          |          |       |          |          |       |
| 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |          |             |            |             |          |          |       |           |            |          |          | 8.443 |          |          |       |
| 414   99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 50       | 38       | 1.809       |            | Yes         | 11       | 26       |       |           | Yes        | 37       | 12       | 4.975 | 2        | 0        | 2.062 |
| 1353         1353         0.000         Yes         Yes         1178         0.000         Yes         Yes         135         135         0.00         40         40         0.000           1531         1395         3.556         Yes         Yes         566         6.839         6.688         No         No         810         500         12.103         65         56         1.173         894         768         4.504         Yes         Yes         530         473         2.555         Yes         Yes         322         256         3.869         46         39         1.077           944         973         0.937         Yes         Yes         666         545         4.520         Yes         No         242         383         7.974         46         45         0.178           904         902         0.067         Yes         Yes         566         545         4.520         Yes         Yes         367         344         1.230         31         40         1.539           158         170         0.937         Yes         Yes         143         105         3.413         Yes         Yes         15         65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |          |             |            |             |          | 85       |       |           |            |          | 12       |       |          |          |       |
| 1531   1395   3.556   Yes   Yes   656   839   6.688   No   No   810   500   12.103   65   56   1.173     944   973   0.937   Yes   Yes   530   473   2.555   Yes   Yes   322   256   3.889   46   39   1.077     944   973   0.937   Yes   Yes   506   518   0.532   Yes   No   242   383   7.974   46   45   0.178     904   902   0.067   Yes   Yes   506   518   0.532   Yes   Yes   367   344   1.230   31   40   1.539     158   170   0.937   Yes   Yes   143   105   3.413   Yes   Yes   15   65   7.906   0   0   0.000     86   154   6.208   No   Yes   Yes   3 0   0.2449   Yes   Yes   14   41   5.149   1   1   0.000     4   0   2.828   Yes   Yes   4   0   2.828   Yes   Yes   0   0   0.000   0   0   0.000     4   0   2.828   Yes   Yes   4   0   2.828   Yes   Yes   0   0   0.000   0   0   0.000     0   0   0.000   Yes   Yes   0   0   0.000   Yes   Yes   0   0   0.000   0   0   0.000     0   0   0.000   Yes   Yes   0   0   0.000   0   0   0.000     0   0   0.000   Yes   Yes   0   0   0.000   0   0   0.000     2   0   2.000   Yes   Yes   2 0   0   0.000   Yes   Yes   0   0   0.000   0   0   0.000     32   17   3.030   Yes   Yes   32   17   3.030   Yes   Yes   0   0   0.000   0   0   0.000     22   33   2.098   Yes   Yes   32   3   17   3.030   Yes   Yes   0   0   0.000   0   0   0.000     27   46   3.145   Yes   Yes   32   3   17   3.030   Yes   Yes   0   0   0.000   0   0   0.000     27   46   3.145   Yes   Yes   3   0   2.449   Yes   Yes   0   0   0.000   0   0   0.000     27   46   3.145   Yes   Yes   9   10   3.244   Yes   Yes   0   0   0.000   0   0   0.000     27   46   3.145   Yes   Yes   27   18   1.897   Yes   Yes   0   0   0.000   0   0   0.000     27   46   3.145   Yes   Yes   9   10   3.244   Yes   Yes   9   0   0   0.000   0   0   0.000     27   46   3.145   Yes   Yes   9   10   3.244   Yes   Yes   0   0   0.000   0   0   0.000     38   2.132   Yes   Yes   9   10   3.244   Yes   Yes   0   0   0.000   0   0   0.000     39   30   3.444   Yes   Yes   5   5   7   0.816   Yes   Yes   5   0   0.000   0   0   0.000        |          |          |             |            |             |          |          |       |           |            |          |          |       |          |          |       |
| 898         768         4.50.4         Yes         Yes         650         473         2.55.5         Yes         No         242         322         256         3.869         46         39         1.077           904         902         0.067         Yes         Yes         506         518         0.532         Yes         Yes         367         344         1.230         31         40         1.539           158         170         0.937         Yes         Yes         143         105         3.413         Yes         Yes         15         65         7.906         0         0         0.000           36         154         6.208         No         Yes         71         112         4.286         Yes         Yes         14         41         5.7906         0         0         0.000           3         0         2.449         Yes         Yes         49         Yes         Yes         0         0         0.000         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          |             |            |             |          |          |       |           |            |          |          |       |          |          |       |
| 944         973         0.937         Yes         Yes         656         545         4.520         Yes         No         242         383         7.974         46         45         0.178           904         902         0.067         Yes         Yes         506         518         0.532         Yes         Yes         367         344         1.230         31         40         1.539           158         170         0.937         Yes         Yes         143         105         3.413         Yes         Yes         15         65         7.906         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |          |             |            |             |          |          |       |           |            |          |          |       |          |          |       |
| 904         902         0.067         Yes         Yes         506         518         0.532         Yes         Yes         387         344         1.230         31         40         1.539           158         170         0.937         Yes         Yes         143         105         3.413         Yes         Yes         15         65         7.906         0         0         0.000           3         0         2.449         Yes         Yes         3         0         2.449         Yes         Yes         0         0         0.000         0         0         0.000           4         0         2.2828         Yes         Yes         0         0         0.000         0         0         0.000           0         0         0.000         Yes         Yes         0         0         0.000         0         0.000         0         0         0.000         0         0         0.000         0         0         0.000         0         0         0.000         0         0         0.000         0         0         0.000         0         0         0.000         0         0.000         0         0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |          |             |            |             |          |          |       |           |            |          |          |       |          |          |       |
| 158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |          |             |            |             |          |          |       |           |            |          |          |       |          |          |       |
| 86         154         6.208         No         Yes         71         112         4.286         Yes         Yes         14         41         5.149         1         1         0.000           3         0         2.449         Yes         Yes         0         0         0.000         0         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 158      | 170      |             |            |             | 143      | 105      |       | Yes       |            | 15       | 65       |       |          |          |       |
| 4         0         2.828         Yes         Yes         0         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 86       |          | 6.208       | No         |             | 71       |          | 4.286 |           | Yes        | 14       | 41       | 5.149 | 1        | 1        | 0.000 |
| 0         0         0.000         Yes         Yes         0         0         0.000         Yes         0         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |          |             |            |             |          |          |       |           |            |          |          |       |          |          |       |
| 0         0         0.000         Yes         Yes         0         0.000         Yes         Yes         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000         0         0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |          |             |            |             |          |          |       |           |            |          |          |       |          |          |       |
| 2         0         2,000         Yes         Yes         2         0         2,000         Yes         Yes         0         0         0,000         0         0,000           32         17         3,030         Yes         Yes         0         0         0,000         0         0,000           22         33         2,098         Yes         Yes         0         0         0,000         0         0,000           3         0         2,449         Yes         Yes         3         0         2,449         Yes         0         0         0,000         0         0,000           27         46         3,145         Yes         Yes         9         10         0,324         Yes         Yes         0         23         6,782         0         5         3,162           10         15         1,414         Yes         Yes         9         10         0,324         Yes         Yes         1         4         1,887         0         5         3,162           10         15         1,414         Yes         Yes         9         10         0,324         Yes         Yes         1         4 <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |          |             |            |             |          |          |       |           |            |          |          |       |          |          |       |
| 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |          |             |            |             |          |          |       |           |            |          |          |       |          |          |       |
| 22         33         2.098         Yes         Yes         22         33         2.098         Yes         Yes         0         0         0.000         0         0.000           3         0         2.249         Yes         Yes         Yes         0         0         0.000         0         0.000           27         46         3.145         Yes         Yes         9         10         0.324         Yes         Yes         0         23         6.782         0         5         3.162           10         15         1.414         Yes         Yes         9         10         0.324         Yes         Yes         1         4         1.897         0         1         1.414           5         3         1.000         Yes         Yes         2         2         0.2000         1         0         1.414           5         3         1.000         Yes         Yes         2         2         0.000         Yes         Yes         2         1         0.816         1         0         1.414           5         3         1.000         Yes         Yes         2         1         0.816                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          |             |            |             |          |          |       |           |            |          |          |       |          |          |       |
| 3         0         2.449         Yes         Yes         3         0         2.449         Yes         Yes         0         0         0.000         0         0.000           27         46         3.145         Yes         Yes         27         18         1.897         Yes         Yes         0         5         3.000         5         3.000         5         3.000         1         1.414         Yes         Yes         9         10         0.324         Yes         Yes         1         4         1.897         0         1         1.414           3         8         2.132         Yes         Yes         0         8         4.000         Yes         Yes         2         0         2.000         1         0         1.414           27         23         0.800         Yes         Yes         2         2         0         2.000         0         0         0.000           11         10         0.309         Yes         Yes         9         10         0.324         Yes         Yes         2         0         2.000         0         0         0.000           11         10         0.316 <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |          |             |            |             |          |          |       |           |            |          |          |       |          |          |       |
| 27         46         3.145         Yes         Yes         27         18         1.897         Yes         Yes         0         23         6.782         0         5         3.162           10         15         1.414         Yes         Yes         9         10         0.324         Yes         Yes         1         4         1.1897         0         1         1.414           3         8         2.132         Yes         Yes         0         8         4.000         Yes         Yes         2         0         2.000         1         0         1.414           5         3         1.000         Yes         Yes         2         2         0.000         Yes         Yes         2         1         0.816         1         0         1.414           5         3         1.000         Yes         Yes         2         2         0.000         Yes         2         1         0.816         1         0         1.414           5         3         1.000         Yes         Yes         2         1         0.806         1         0         1.414           11         1.0         0.309                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |          |             |            |             |          |          |       |           |            |          |          |       |          |          |       |
| 3         8         2.132         Yes         Yes         0         8         4.000         Yes         Yes         2         0         2.000         1         0         1.414           5         3         1.000         Yes         Yes         2         2         0.000         Yes         Yes         2         1         0.816         1         0         1.414           27         23         0.800         Yes         Yes         25         23         0.408         Yes         Yes         2         0         2.000         0         0         0.000           11         10         0.309         Yes         Yes         9         10         0.324         Yes         Yes         2         0         2.000         0         0         0.000           5         7         0.816         Yes         Yes         Yes         Yes         2         0         2.000         0         0         0.000           3         2         0.632         Yes         Yes         9         0         0         0.000         0         0.000           1         0         1.414         Yes         Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 27       | 46       | 3.145       |            | Yes         | 27       |          | 1.897 |           |            | 0        |          | 6.782 | 0        |          |       |
| 5         3         1.000         Yes         Yes         2         2         0.000         Yes         Yes         2         1         0.816         1         0         1.414           27         23         0.800         Yes         Yes         25         23         0.408         Yes         Yes         2         0         2.000         0         0         0.000           11         10         0.309         Yes         Yes         9         10         0.324         Yes         Yes         2         0         2.000         0         0.000           5         7         0.816         Yes         Yes         Yes         0         0         0.000         0         0.000           3         2         0.632         Yes         Yes         3         2         0.632         Yes         O         0         0.000         0         0.000           1         0         1.414         Yes         Yes         Yes         0         0         0.000         0         0.000           0         2         2.000         Yes         Yes         0         1         1.414         Yes         Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |          |             |            |             |          |          |       |           |            |          |          |       |          |          |       |
| 27         23         0.800         Yes         Yes         25         23         0.408         Yes         Yes         2         0         2.000         0         0.000           11         10         0.309         Yes         Yes         9         10         0.324         Yes         Yes         2         0         2.000         0         0         0.000           5         7         0.816         Yes         Yes         Yes         0         0         0.000         0         0.000           3         2         0.632         Yes         Yes         Yes         0         0         0.000         0         0.000           1         0         1.414         Yes         Yes         0         0         0.000         0         0.000           0         2         2.000         Yes         Yes         0         1         1.414         O         0         0.000           0         2         2.000         Yes         Yes         0         1         1.414         O         0         0.000           6         0         3.464         Yes         Yes         5         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |          |             |            |             |          |          |       |           |            |          |          |       |          |          |       |
| 11         10         0.309         Yes         Yes         9         10         0.324         Yes         Yes         2         0         2.000         0         0         0.000           5         7         0.816         Yes         Yes         0         0         0.000         0         0         0.000           3         2         0.632         Yes         Yes         0         0         0.000         0         0.000           1         0         1.414         Yes         Yes         0         0         0.000         0         0.000           0         2         2.000         Yes         Yes         Yes         0         0         0.000         0         0.000           6         0         3.464         Yes         Yes         5         0         3.162         Yes         Yes         1         0         1.414         Yes         Yes         1         0         0.000           3         0         2.449         Yes         Yes         1         0         1.414         Yes         Yes         1         0         0.000         0         0.000           3         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |          |             |            |             |          |          |       |           |            |          |          |       |          |          |       |
| 5         7         0.816         Yes         Yes         5         7         0.816         Yes         Yes         0         0         0.000         0         0.000           3         2         0.632         Yes         Yes         0         0         0.000         0         0.000           1         0         1.414         Yes         Yes         0         0         0.000         0         0.000           0         2         2.000         Yes         Yes         0         1         1.414         Yes         Yes         0         1         1.414         0         0         0.000           6         0         3.464         Yes         Yes         5         0         3.162         Yes         Yes         1         0         1.414         0         0         0.000           3         0         2.449         Yes         Yes         3         0         2.449         Yes         Yes         0         0         0.000         0         0         0.000           229         266         2.352         Yes         Yes         215         216         0.068         Yes         Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |          |             |            |             |          |          |       |           |            |          |          |       |          |          |       |
| 3         2         0.632         Yes         Yes         3         2         0.632         Yes         Yes         0         0         0.000         0         0.000           1         0         1.414         Yes         Yes         0         0         0.000         0         0.000           0         2         2.000         Yes         Yes         0         1         1.414         0         0         0.000           6         0         3.464         Yes         Yes         5         0         3.162         Yes         Yes         1         0         1.414         0         0         0.000           3         0         2.449         Yes         Yes         Yes         Yes         0         0         0.000         0         0.000           229         266         2.352         Yes         Yes         215         216         0.068         Yes         Yes         14         50         6.364         0         0         0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |          |             |            |             |          |          |       |           |            |          |          |       |          |          |       |
| 1     0     1.414     Yes     Yes     1     0     1.414     Yes     Yes     0     0     0.000     0     0.000       0     2     2.000     Yes     Yes     0     1     1.414     Yes     Yes     0     1     1.414     0     0     0.000       6     0     3.464     Yes     Yes     5     0     3.162     Yes     Yes     1     0     1.414     0     0     0.000       3     0     2.449     Yes     Yes     3     0     2.449     Yes     Yes     0     0     0.000     0     0     0.000       229     266     2.352     Yes     Yes     215     216     0.068     Yes     Yes     14     50     6.364     0     0     0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          |             |            |             |          |          |       |           |            |          |          |       |          |          |       |
| 0     2     2.000     Yes     Yes     0     1     1.414     Yes     Yes     0     1     1.414     0     0     0.000       6     0     3.464     Yes     Yes     5     0     3.162     Yes     Yes     1     0     1.414     0     0     0.000       3     0     2.449     Yes     Yes     3     0     0     0     0.000     0     0     0.000       229     266     2.352     Yes     Yes     215     216     0.068     Yes     Yes     Yes     14     50     6.364     0     0     0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |          |             |            |             |          |          |       |           |            |          |          |       |          |          |       |
| 6         0         3.464         Yes         Yes         5         0         3.162         Yes         Yes         1         0         1.414         0         0         0.000           3         0         2.449         Yes         Yes         1         0         0.000         0         0         0.000           229         266         2.352         Yes         Yes         215         216         0.068         Yes         Yes         14         50         6.364         0         0         0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |          |             |            |             |          |          |       |           |            |          |          |       |          |          |       |
| 3 0 2.449 Yes Yes 3 0 2.449 Yes Yes 0 0 0.000 0 0.000<br>229 266 2.352 Yes Yes 215 216 0.068 Yes Yes 14 50 6.364 0 0 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |          | 3.464       |            |             | 5        | 0        | 3.162 |           |            | 1        | 0        | 1.414 |          |          | 0.000 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3        | 0        | 2.449       | Yes        | Yes         | 3        | 0        | 2.449 | Yes       | Yes        |          | 0        | 0.000 |          | 0        | 0.000 |
| 168   169   0.077   Yes   Yes   155   142   1.067   Yes   Yes   13   27   3.130   0   0   0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          |             |            |             |          |          |       |           |            |          |          |       |          |          |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 168      | 169      | 0.077       | Yes        | Yes         | 155      | 142      | 1.067 | Yes       | Yes        | 13       | 27       | 3.130 | 0        | 0        | 0.000 |



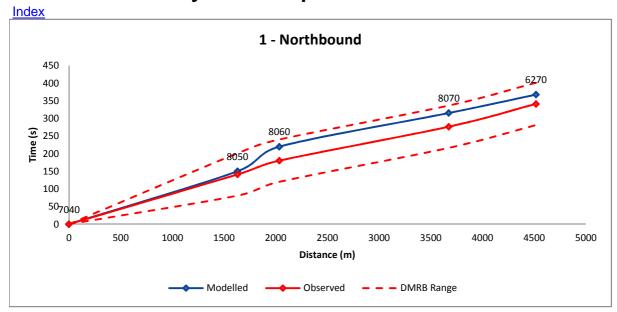
| ID         | Calibration /<br>Validation | Area | ID         | Site Location                                              | Dir           | Date             | Data Type     | Duplicate? | Ref                    | A-Node         | B-Node         | Factor Pea | Interp<br>k eak | PM<br>Peak | Check    |
|------------|-----------------------------|------|------------|------------------------------------------------------------|---------------|------------------|---------------|------------|------------------------|----------------|----------------|------------|-----------------|------------|----------|
| 5          | Calibration                 |      | 3          | Gisleham Road                                              | NB            | Jul-15           | ATC           | No         | 9600-5010              | 9600           | 5010           | Ye         |                 | Yes        | OK       |
| 6<br>7     | Calibration<br>Calibration  |      | 3          | Gisleham Road A146 Beccles Road                            | SB<br>EB      | Jul-15<br>Jul-15 | ATC<br>ATC    | No<br>No   | 5010-9600<br>1514-4513 | 5010<br>4514   | 9600<br>4513   | Ye.        | Yes<br>Yes      | Yes        | OK<br>OK |
| 8          | Calibration                 |      | 4          | A146 Beccles Road                                          | WB            | Jul-15           | ATC           | No         | 1513-4514              | 4513           | 4514           | Ye         |                 | Yes        | OK       |
| 9          | Validation                  |      | 5          | A1145 Castleton Avenue                                     | EB            | Jul-15           | ATC           | No         | 110-5060               | 5110           | 5060           | Ye         |                 | Yes        | OK       |
| 10<br>11   | Validation<br>Validation    |      | 5          | A1145 Castleton Avenue A12 London Road                     | WB<br>NB      | Jul-15<br>Jul-15 | ATC<br>ATC    | No<br>No   | 5060-5110<br>5390-1000 | 5060<br>5390   | 5110<br>1000   | Ye:<br>Ye: |                 | Yes        | OK<br>OK |
| 12         | Validation                  |      | 6          | A12 London Road                                            | SB            | Jul-15           | ATC           | No         | 1000-5390              | 1000           | 5390           | Ye         |                 | Yes        | OK       |
| 13         | Calibration                 |      | 7          | London Road South                                          | NEB           | Jul-15           | ATC           | No         | 9606-1040              | 9606           | 1040           | Ye         |                 | Yes        | OK       |
| 14<br>15   | Calibration<br>Calibration  |      | 7          | London Road South A12 Tom Crisp Way                        | SWB<br>NEB    | Jul-15<br>Jul-15 | ATC<br>ATC    | No<br>No   | 040-9606<br>000-1001   | 1040<br>3000   | 9606<br>10015  | Ye:<br>Ye: |                 | Yes        | OK<br>OK |
| 16         | Calibration                 |      | 8          | A12 Tom Crisp Way                                          | SWB           | Jul-15           | ATC           | No         | 0015-300               | 10015          | 3000           | Ye         |                 | Yes        | OK       |
| 17         | Calibration                 |      | 9          | A1117 Elm Tree Road                                        | NB            | Jul-15           | ATC           | No         | 3030-3040              | 3030           | 3040           | Ye         |                 | Yes        | OK       |
| 18<br>19   | Calibration<br>Validation   |      | 9          | A1117 Elm Tree Road A146 Beccles Road                      | SB<br>NEB     | Jul-15<br>Jul-15 | ATC<br>ATC    | No<br>No   | 3040-3030<br>0111-1010 | 3040<br>10111  | 3030<br>10109  | Ye:<br>Ye: |                 | Yes        | OK<br>OK |
| 20         | Validation                  |      | 10         | A146 Beccles Road                                          | SWB           | Jul-15           | ATC           | No         | 0109-101               | 10109          | 10111          | Ye         |                 | Yes        | OK       |
| 21         | Calibration                 |      | 11         | Kirkley Run                                                | NWB           | Jul-15           | ATC           | No         | 0103-527               | 10103          | 5270           | Ye         |                 | Yes        | OK       |
| 22         | Calibration<br>Calibration  |      | 11         | Kirkley Run<br>A146 Waveney Drive                          | SEB<br>EB     | Jul-15<br>Jul-15 | ATC<br>ATC    | No<br>No   | 270-1010<br>0088-401   | 5270<br>10088  | 10103<br>4010  | Ye:<br>Ye: |                 | Yes        | OK<br>OK |
| 24         | Calibration                 |      | 12         | A146 Waveney Drive                                         | WB            | Jul-15           | ATC           | No         | 010-1008               | 4010           | 10088          | Ye         |                 | Yes        | OK       |
| 29         | Calibration                 |      | 15         | Katwijk Way                                                | NB            | Jul-15           | ATC           | No         | 040-1013               | 6040           | 10136          | Ye         |                 | Yes        | OK       |
| 30<br>31   | Calibration                 |      | 15<br>16   | Katwijk Way A12 Battery Green Road                         | SB<br>NB      | Jul-15<br>Jul-15 | ATC<br>ATC    | No<br>No   | 0136-604<br>3160-6150  | 10136<br>6160  | 6040<br>6150   | Ye:<br>Ye: |                 | Yes        | OK<br>OK |
| 32         | Calibration<br>Calibration  |      | 16         | A12 Battery Green Road                                     | SB            | Jul-15<br>Jul-15 | ATC           | No         | 3150-6160              | 6150           | 6160           | Ye         |                 | Yes        |          |
| 33         | Validation                  |      | 17         | A12 Old Nelson Street                                      | NB            | Jul-15           | ATC           | No         | 3140-6130              | 6140           | 6130           | Ye         | Yes             | Yes        | OK       |
| 34<br>35   | Validation<br>Validation    |      | 17<br>18   | A12 Old Nelson Street St Peter's Street                    | SB<br>EB      | Jul-15<br>Jul-15 | ATC<br>ATC    | No<br>No   | 3130-6140<br>3070-6075 | 6130<br>6070   | 6140<br>6075   | Ye.<br>Ye. |                 | Yes        | OK<br>OK |
| 36         | Validation<br>Validation    |      | 18         | St Peter's Street St Peter's Street                        | WB            | Jul-15<br>Jul-15 | ATC           | No<br>No   | 075-607                | 6075           | 6070           | Ye         | Yes Yes         | Yes        | OK       |
| 37         | Calibration                 |      | 19         | Denmark Road                                               | EB            | Jul-15           | ATC           | No         | 200-1013               | 7200           | 10139          | Ye         | Yes             | Yes        | OK       |
| 38         | Calibration<br>Validation   |      | 19         | Denmark Road                                               | WB            | Jul-15           | ATC           | No         | 0139-720               | 10139          | 7200           | Ye         |                 | Yes        | OK       |
| 39<br>40   | Validation<br>Validation    |      | 20         | Rotterdam Road<br>Rotterdam Road                           | NEB<br>SWB    | Jul-15<br>Jul-15 | ATC<br>ATC    | No<br>No   | 7210-9130<br>9130-7210 | 7210<br>9130   | 9130<br>7210   | Ye:<br>Ye: |                 | Yes        | OK<br>OK |
| 41         | Calibration                 |      | 21         | Peto Way                                                   | NB            | Jul-15           | ATC           | No         | 0190-706               | 10190          | 7060           | Ye         |                 | Yes        | OK       |
| 42         | Calibration                 |      | 21         | Peto Way                                                   | SB            | Jul-15           | ATC           | No         | 060-1019               | 7060           | 10190          | Ye         |                 | Yes        |          |
| 43<br>44   | Calibration<br>Calibration  |      | 22         | A1117 Normanston Drive A1117 Normanston Drive              | NEB<br>SWB    | Jul-15<br>Jul-15 | ATC<br>ATC    | No<br>No   | 7050-7060<br>7060-7050 | 7050<br>7060   | 7060<br>7050   | Ye:<br>Ye: |                 | Yes        | OK<br>OK |
| 45         | Calibration                 |      | 23         | A1144 Normanston Drive                                     | EB            | Jul-15           | ATC           | No         | 240-9130               | 9240           | 9130           | Ye         |                 | Yes        | OK       |
| 46         | Calibration                 |      | 23         | A1144 Normanston Drive                                     | WB            | Jul-15           | ATC           | No         | 130-9240               | 9130           | 9240           | Ye         |                 | Yes        | OK       |
| 47<br>48   | Calibration<br>Calibration  |      | 24         | Oulton Road<br>Oulton Road                                 | EB<br>WB      | Jul-15<br>Jul-15 | ATC<br>ATC    | No<br>No   | 270-1001<br>0010-927   | 9270<br>10010  | 10010<br>9270  | Ye:<br>Ye: |                 | Yes        | OK<br>OK |
| 49         | Calibration                 |      | 25         | B1375 Gorleston Road                                       | NB            | Jul-15           | ATC           | No         | 3030-8040              | 8030           | 8040           | Ye         |                 | Yes        | OK       |
| 50         | Calibration                 |      | 25         | B1375 Gorleston Road                                       | SB            | Jul-15           | ATC           | No         | 3040-8030              | 8040           | 8030           | Ye         | Yes             | Yes        | OK       |
| 51<br>52   | Calibration<br>Calibration  |      | 26<br>26   | A1117 Millennium Way A1117 Millennium Way                  | NB<br>SB      | Jul-15<br>Jul-15 | ATC<br>ATC    | No<br>No   | 7070-7080<br>7080-7070 | 7070<br>7080   | 7080<br>7070   | Ye:<br>Ye: |                 | Yes        | OK<br>OK |
| 53         | Calibration                 |      | 27         | A12 Yarmouth Road                                          | NWB           | Jul-15           | ATC           | No         | 030-7070               | 10242          | 10248          | Ye         |                 | Yes        | OK       |
| 54         | Calibration                 |      | 27         | A12 Yarmouth Road                                          | SEB           | Jul-15           | ATC           | No         | )248-1024              | 10248          | 10242          | Ye         | Yes             | Yes        | OK       |
| 55<br>56   | Calibration                 |      | 28         | B1385 Corton Road<br>B1385 Corton Road                     | NB<br>SB      | Jul-15           | ATC<br>ATC    | No<br>No   | 9460-9480<br>9480-9460 | 9460<br>9480   | 9480<br>9460   | Ye         |                 | Yes        | OK       |
| 57         | Calibration<br>Calibration  |      | 29         | A12 Yarmouth Road                                          | NB            | Jul-15<br>Jul-15 | ATC           | No         | 0257-625               | 10257          | 6250           | Ye:<br>Ye: |                 | Yes        |          |
| 58         | Calibration                 |      | 29         | A12 Yarmouth Road                                          | SB            | Jul-15           | ATC           | No         | 250-1025               | 6250           | 10257          | Ye         | Yes             | Yes        | OK       |
| 59<br>60   | Calibration<br>Calibration  |      | 30         | B1375 Parkhill<br>B1375 Parkhill                           | NB<br>SB      | Jul-15<br>Jul-15 | ATC<br>ATC    | No<br>No   | 0001-807<br>070-1000   | 10001<br>8070  | 8070<br>10001  | Ye:<br>Ye: |                 | Yes        | OK<br>OK |
| 61         | Calibration                 |      | 31         | B1074 Bluderston Road                                      | NB            | Jul-15<br>Jul-15 | ATC           | No         | 070-1000               | 10025          | 20026          | Ye         |                 | Yes        | OK       |
| 62         | Calibration                 |      | 31         | B1074 Bluderston Road                                      | SB            | Jul-15           | ATC           | No         | 0026-1002              | 20026          | 10025          | Ye         | Yes             | Yes        | OK       |
| 63         | Calibration<br>Calibration  |      | 32         | Fixton Road                                                | NB<br>SB      | Jul-15           | ATC<br>ATC    | No         | 440-1002<br>0024-944   | 9440<br>10024  | 10024<br>9440  | Ye         |                 | Yes        | OK<br>OK |
| 64<br>65   | Validation                  |      | 33         | Fixton Road<br>Coast Road                                  | NB            | Jul-15<br>Jul-15 | ATC           | No<br>No   | 510-1002               | 9510           | 10027          | Ye:<br>Ye: |                 | Yes        | OK       |
| 66         | Validation                  |      | 33         | Coast Road                                                 | SB            | Jul-15           | ATC           | No         | 0027-951               | 10027          | 9510           | Ye         | Yes             | Yes        | OK       |
| 67         | Validation                  |      | 6/605      | Katwijk Way                                                | NB<br>NB      | Jul-13           | TRADS<br>ANPR | No<br>No   | 7280-6060              | 7280           | 6060           | Ye         |                 | Yes        | OK       |
| 75<br>76   | Calibration<br>Calibration  |      | 3          | A12YarmouthRd<br>A12YarmouthRd                             | SB            | Jul-15<br>Jul-15 | ANPR          | No<br>No   | 3280-4520<br>1520-6280 | 6280<br>4520   | 4520<br>6280   | Ye:<br>Ye: |                 | Yes        | OK<br>OK |
| 79         | Validation                  |      | 5          | A12 Pier Terrace                                           | NB            | Jul-15           | ANPR          | No         | 260-1002               | 1260           | 10023          | Ye         | Yes             | Yes        | OK       |
| 80<br>81   | Validation<br>Validation    |      | 5          | A12 Pier Terrace<br>Saltwater Way                          | SB<br>NB      | Jul-15<br>Jul-15 | ANPR<br>ANPR  | No<br>No   | 0023-126<br>2050-2060  | 10023<br>2050  | 1260<br>2060   | Ye:<br>Ye: |                 | Yes        | OK<br>OK |
| 82         | Validation                  |      | 6          | Saltwater Way Saltwater Way                                | SB            | Jul-15<br>Jul-15 | ANPR          | No         | 2060-2060              | 2060           | 2050           | Ye         |                 | Yes        | OK       |
| 99         | Validation                  |      | 15         | North Quay Retail Park                                     | Entry         | Jul-15           | ANPR          | No         | 220-9230               | 9220           | 9230           | Ye         | Yes             | Yes        | OK       |
| 100        | Validation<br>Validation    |      | 15<br>16   | North Quay Retail Park<br>Links Road Car Park              | Exit<br>EB    | Jul-15<br>Jul-15 | ANPR<br>ANPR  | No<br>No   | 9230-9220              | 9230           | 9220           | Ye:<br>Ye: |                 | Yes        | OK<br>OK |
| 101        | Validation                  |      | 16         | Links Road Car Park Links Road Car Park                    | WB            | Jul-15<br>Jul-15 | ANPR          | No         | 9602-9603<br>9603-9602 | 9602<br>9603   | 9603<br>9602   | Ye         | Yes             | Yes        | OK       |
| 103        | Validation                  |      | 17         | Swimming Pool Road Car Park                                | EB            | Jul-15           | ANPR          | No         | 090-1025               | 9090           | 10251          | Ye         | Yes             | Yes        | OK       |
| 104        | Validation                  |      | 17         | Swimming Pool Road Car Park Battery Green Road Car Park    | WB<br>Exit    | Jul-15           | ANPR          | No<br>No   | 0251-909               | 10251          | 9090           | Ye         |                 | Yes        | OK       |
| 106<br>107 | Validation<br>Validation    |      | 18<br>19   | Battery Green Road Car Park Gordon Road Car Park Entry     | Entry         | Jul-15<br>Jul-15 | ANPR<br>ANPR  | No<br>No   | )127-1012<br>3140-9050 | 10127<br>6140  | 10126<br>9050  | Ye:<br>Ye: |                 | Yes        | OK<br>OK |
| 109        | Validation                  |      | 20         | Surrey Street Car Park Entry                               | Entry         | Jul-15           | ANPR          | No         | )130-1013              | 10130          | 10131          | Ye         | Yes             | Yes        | OK       |
| 112        | Validation                  |      | 21         | Clapham Road Car Park Exit                                 | Exit          | Jul-15           | ANPR          | No         | 0132-1013              | 10132          | 10133          | Ye         |                 | Yes        |          |
| 113<br>114 | Validation<br>Validation    |      | 22         | Clapham Road South Clapham Road South                      | Entry<br>Exit | Jul-15<br>Jul-15 | ANPR<br>ANPR  | No<br>No   | )137-1013<br>)138-1013 | 10137<br>10138 | 10138<br>10137 | Ye:<br>Ye: |                 | Yes        | OK<br>OK |
| 115        | Validation                  |      | 23         | St Johns Road Car Park                                     | Entry         | Jul-15           | ANPR          | No         | 0083-1008              | 10083          | 10084          | Ye         |                 | Yes        | OK       |
| 116        | Validation                  |      | 23         | St Johns Road Car Park                                     | Exit          | Jul-15           | ANPR          | No         | 000 1025               | 10084          | 10083          | Ye         |                 | Yes        |          |
| 117<br>118 | Validation<br>Validation    |      | 24a<br>24a | Kirkley Rise Car Park<br>Kirkley Rise Car Park             | Entry         | Jul-15<br>Jul-15 | ANPR<br>ANPR  | No<br>No   | 000-1025<br>0256-400   | 4000<br>10256  | 10256<br>4000  | Ye:<br>Ye: |                 | Yes        | OK<br>OK |
| 119        | Validation                  |      | 24b        | Kirkley Rise Car Park                                      | Entry         | Jul-15           | ANPR          | No         | 300-1007               | 5300           | 10078          | Ye         |                 | Yes        | OK       |
| 120        | Validation                  |      | 24b        | Kirkley Rise Car Park                                      | Exit          | Jul-15           | ANPR          | No         | 0078-530               | 10078          | 5300           | Ye         | Yes             | Yes        | OK       |
| 121<br>122 | Validation<br>Validation    |      | 25<br>25   | Kirkley Cliff Road Car Park<br>Kirkley Cliff Road Car Park | Entry<br>Exit | Jul-15<br>Jul-15 | ANPR<br>ANPR  | No<br>No   | 120-1007<br>0075-112   | 1120<br>10075  | 10075<br>1120  | Ye:<br>Ye: |                 | Yes        |          |
| 125        | Validation<br>Validation    |      | 25         | Marine Parade                                              | Entry         | Jul-15<br>Jul-15 | ANPR          | No         | 0075-112               | 10075          | 10082          | Ye         |                 | Yes        |          |
| 126        | Validation                  |      | 27         | Marine Parade                                              | Exit          | Jul-15           | ANPR          | No         | 0082-1008              | 10082          | 10081          | Ye         | Yes             | Yes        | OK       |
| 127        | Validation<br>Validation    |      | 28<br>28   | Asda Car Park<br>Asda Car Park                             | Entry         | Jul-15           | ANPR          | No<br>No   | 000-1008<br>0085-400   | 4000           | 10085          | Ye         |                 | Yes        | OK       |
| 128        |                             |      | 40         | ASUA CAI PAIK                                              | Exit          | Jul-15           | ANPR          | No         | vvov-400               | 10085          | 4000           | Ye         | Yes             | Yes        | OK       |

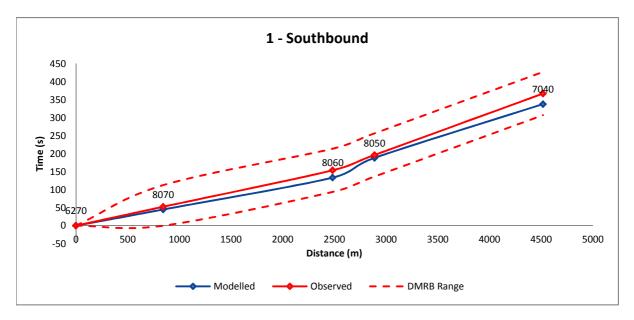

|            | Interpeak ALL VEHICLES CAR LGV HGV |                  |            |            |            |            |                |            |            |            |            |                 | HGV      |          |                |  |  |  |
|------------|------------------------------------|------------------|------------|------------|------------|------------|----------------|------------|------------|------------|------------|-----------------|----------|----------|----------------|--|--|--|
| Observed   | Modelled                           | GEH              |            | Flow Pass? | Observed   | Modelled   | GEH            | GEH Pass?  | Flow Pass? | Observed   | Modelled   | GEH             | Observed | Modelled | GEH            |  |  |  |
| 20         | 10                                 | 2.521            | Yes        | Yes        | 7          | 6          | 0.536          | Yes        | Yes        | 11         | 3          | 3.118           | 1        | 1        | 0.021          |  |  |  |
| 22         | 24                                 | 0.318            | Yes        | Yes        | 10         | 10         | 0.063          | Yes        | Yes        | 12         | 12         | 0.109           | 1        | 2        | 0.021          |  |  |  |
| 589        | 617                                | 1.147            | Yes        | Yes        | 227        | 254        | 1.752          | Yes        | Yes        | 316        | 316        | 0.028           | 47       | 47       | 0.073          |  |  |  |
| 588        | 588<br>369                         | 0.014<br>3.412   | Yes        | Yes        | 161<br>161 | 162<br>189 | 0.066<br>2.131 | Yes        | Yes        | 378<br>123 | 378<br>152 | 0.009<br>2.514  | 48<br>23 | 48<br>28 | 0.048          |  |  |  |
| 306<br>322 | 297                                | 1.430            | Yes<br>Yes | Yes<br>Yes | 158        | 102        | 4.941          | Yes<br>Yes | Yes<br>Yes | 137        | 168        | 2.469           | 26       | 27       | 0.999          |  |  |  |
| 642        | 615                                | 1.096            | Yes        | Yes        | 313        | 355        | 2.322          | Yes        | Yes        | 292        | 237        | 3.355           | 38       | 23       | 2.775          |  |  |  |
| 664        | 615                                | 1.926            | Yes        | Yes        | 375        | 363        | 0.610          | Yes        | Yes        | 249        | 235        | 0.922           | 40       | 17       | 4.252          |  |  |  |
| 385<br>408 | 367<br>411                         | 0.937<br>0.147   | Yes<br>Yes | Yes<br>Yes | 207<br>203 | 198<br>205 | 0.662<br>0.167 | Yes<br>Yes | Yes<br>Yes | 158<br>184 | 151<br>185 | 0.589<br>0.050  | 19<br>21 | 18<br>21 | 0.330          |  |  |  |
| 490        | 535                                | 2.010            | Yes        | Yes        | 353        | 391        | 1.957          | Yes        | Yes        | 114        | 121        | 0.609           | 22       | 23       | 0.241          |  |  |  |
| 492        | 499                                | 0.332            | Yes        | Yes        | 326        | 325        | 0.076          | Yes        | Yes        | 141        | 150        | 0.706           | 24       | 24       | 0.045          |  |  |  |
| 382<br>405 | 389<br>395                         | 0.338<br>0.481   | Yes<br>Yes | Yes<br>Yes | 211<br>235 | 218<br>235 | 0.490<br>0.028 | Yes<br>Yes | Yes<br>Yes | 153<br>153 | 153<br>143 | 0.038<br>0.792  | 18<br>17 | 18<br>17 | 0.016          |  |  |  |
| 417        | 301                                | 6.104            | No         | No         | 224        | 131        | 6.982          | No         | Yes        | 172        | 153        | 1.519           | 20       | 17       | 0.745          |  |  |  |
| 399        | 316                                | 4.391            | Yes        | Yes        | 258        | 116        | 10.393         | No         | No         | 124        | 179        | 4.425           | 16       | 21       | 1.065          |  |  |  |
| 132        | 136                                | 0.315            | Yes        | Yes        | 90         | 93         | 0.281          | Yes        | Yes        | 38         | 39         | 0.087           | 4        | 4        | 0.216          |  |  |  |
| 109<br>258 | 106<br>262                         | 0.329<br>0.264   | Yes<br>Yes | Yes<br>Yes | 75<br>151  | 73<br>156  | 0.211<br>0.367 | Yes<br>Yes | Yes<br>Yes | 31<br>97   | 30<br>97   | 0.186<br>0.001  | 9        | 3<br>9   | 0.320          |  |  |  |
| 266        | 264                                | 0.111            | Yes        | Yes        | 134        | 135        | 0.124          | Yes        | Yes        | 122        | 119        | 0.296           | 10       | 10       | 0.000          |  |  |  |
| 323        | 297                                | 1.465            | Yes        | Yes        | 193        | 181        | 0.849          | Yes        | Yes        | 106        | 101        | 0.525           | 24       | 15       | 2.005          |  |  |  |
| 204        | 198                                | 0.454<br>0.092   | Yes        | Yes        | 138        | 147        | 0.732          | Yes        | Yes        | 49         | 49         | 0.012           | 17       | 2        | 4.920          |  |  |  |
| 465<br>610 | 467<br>583                         | 1.098            | Yes<br>Yes | Yes<br>Yes | 202<br>355 | 204<br>318 | 0.118<br>2.024 | Yes<br>Yes | Yes<br>Yes | 238<br>229 | 238<br>239 | 0.019<br>0.682  | 25<br>26 | 25<br>26 | 0.002          |  |  |  |
| 440        | 436                                | 0.185            | Yes        | Yes        | 325        | 215        | 6.668          | No         | No         | 88         | 201        | 9.396           | 27       | 20       | 1.506          |  |  |  |
| 474        | 597                                | 5.335            | No         | No         | 336        | 354        | 0.969          | Yes        | Yes        | 115        | 223        | 8.336           | 23       | 20       | 0.624          |  |  |  |
| 646<br>446 | 364<br>206                         | 12.533<br>13.274 | No<br>No   | No<br>No   | 274<br>299 | 269<br>154 | 0.311<br>9.645 | Yes<br>No  | Yes<br>No  | 344<br>121 | 90<br>46   | 17.243<br>8.242 | 27<br>25 | 5<br>6   | 5.571<br>4.828 |  |  |  |
| 237        | 244                                | 0.456            | Yes        | Yes        | 153        | 158        | 0.420          | Yes        | Yes        | 78         | 79         | 0.165           | 7        | 7        | 0.142          |  |  |  |
| 338        | 345                                | 0.367            | Yes        | Yes        | 228        | 232        | 0.253          | Yes        | Yes        | 99         | 102        | 0.278           | 11       | 11       | 0.047          |  |  |  |
| 146        | 110                                | 3.165            | Yes        | Yes        | 87         | 76         | 1.234          | Yes        | Yes        | 54         | 32         | 3.392           | 4        | 4        | 1.328          |  |  |  |
| 140<br>445 | 124<br>449                         | 1.398<br>0.178   | Yes<br>Yes | Yes<br>Yes | 88<br>303  | 84<br>306  | 0.405<br>0.182 | Yes<br>Yes | Yes<br>Yes | 50<br>133  | 36<br>133  | 2.069<br>0.031  | 3<br>10  | 10       | 0.661          |  |  |  |
| 550        | 553                                | 0.146            | Yes        | Yes        | 300        | 305        | 0.274          | Yes        | Yes        | 237        | 236        | 0.065           | 12       | 12       | 0.099          |  |  |  |
| 641        | 678                                | 1.458            | Yes        | Yes        | 323        | 358        | 1.908          | Yes        | Yes        | 297        | 299        | 0.089           | 20       | 21       | 0.154          |  |  |  |
| 650        | 645                                | 0.199            | Yes        | Yes        | 356        | 363        | 0.346          | Yes        | Yes        | 270        | 258        | 0.724           | 24       | 24<br>12 | 0.027          |  |  |  |
| 281<br>275 | 298<br>275                         | 0.975<br>0.004   | Yes<br>Yes | Yes<br>Yes | 160<br>180 | 176<br>177 | 1.260<br>0.252 | Yes<br>Yes | Yes<br>Yes | 110<br>83  | 110<br>87  | 0.005<br>0.390  | 12<br>11 | 11       | 0.064          |  |  |  |
| 325        | 266                                | 3.421            | Yes        | Yes        | 182        | 171        | 0.812          | Yes        | Yes        | 134        | 86         | 4.563           | 9        | 9        | 0.053          |  |  |  |
| 270        | 253                                | 1.058            | Yes        | Yes        | 164        | 161        | 0.210          | Yes        | Yes        | 99         | 84         | 1.557           | 8        | 8        | 0.164          |  |  |  |
| 445<br>473 | 415<br>462                         | 1.457<br>0.489   | Yes<br>Yes | Yes<br>Yes | 336<br>367 | 306<br>357 | 1.648<br>0.523 | Yes<br>Yes | Yes<br>Yes | 92<br>89   | 92<br>89   | 0.011<br>0.029  | 18<br>16 | 17<br>16 | 0.142          |  |  |  |
| 438        | 472                                | 1.575            | Yes        | Yes        | 348        | 378        | 1.564          | Yes        | Yes        | 75         | 81         | 0.656           | 15       | 13       | 0.528          |  |  |  |
| 392        | 445                                | 2.597            | Yes        | Yes        | 326        | 356        | 1.615          | Yes        | Yes        | 51         | 74         | 2.942           | 15       | 15       | 0.017          |  |  |  |
| 508        | 508                                | 0.002            | Yes        | Yes        | 318        | 318        | 0.017          | Yes        | Yes        | 168        | 168        | 0.004           | 22       | 22       | 0.039          |  |  |  |
| 510<br>88  | 481<br>87                          | 1.309<br>0.074   | Yes<br>Yes | Yes<br>Yes | 299<br>73  | 270<br>73  | 1.717<br>0.019 | Yes<br>Yes | Yes<br>Yes | 185<br>13  | 185<br>12  | 0.035<br>0.161  | 26<br>2  | 26<br>2  | 0.062          |  |  |  |
| 99         | 99                                 | 0.038            | Yes        | Yes        | 80         | 80         | 0.012          | Yes        | Yes        | 17         | 17         | 0.086           | 2        | 2        | 0.090          |  |  |  |
| 495        | 489                                | 0.276            | Yes        | Yes        | 389        | 389        | 0.018          | Yes        | Yes        | 80         | 74         | 0.639           | 26       | 26       | 0.031          |  |  |  |
| 542        | 502<br>234                         | 1.750<br>1.869   | Yes        | Yes<br>Yes | 370<br>210 | 331<br>181 | 2.077<br>2.101 | Yes<br>Yes | Yes<br>Yes | 144<br>42  | 143<br>42  | 0.079<br>0.001  | 28<br>11 | 28<br>11 | 0.030          |  |  |  |
| 263<br>193 | 186                                | 0.532            | Yes<br>Yes | Yes        | 140        | 133        | 0.604          | Yes        | Yes        | 42         | 42         | 0.001           | 7        | 7        | 0.023          |  |  |  |
| 116        | 116                                | 0.031            | Yes        | Yes        | 73         | 73         | 0.015          | Yes        | Yes        | 39         | 39         | 0.037           | 4        | 4        | 0.213          |  |  |  |
| 101        | 107                                | 0.570            | Yes        | Yes        | 11         | 18         | 1.711          | Yes        | Yes        | 82         | 82         | 0.016           | 8        | 7        | 0.224          |  |  |  |
| 49<br>71   | 50<br>73                           | 0.131<br>0.209   | Yes<br>Yes | Yes<br>Yes | 7          | 7          | 0.105<br>0.060 | Yes<br>Yes | Yes<br>Yes | 40<br>63   | 40<br>63   | 0.063<br>0.023  | 3<br>4   | 3<br>6   | 0.150<br>0.819 |  |  |  |
| 63         | 68                                 | 0.681            | Yes        | Yes        | 7          | 49         | 7.867          | No         | Yes        | 53         | 18         | 5.853           | 2        | 1        | 1.071          |  |  |  |
| 60         | 86                                 | 3.059            | Yes        | Yes        | 14         | 60         | 7.464          | No         | Yes        | 43         | 25         | 3.081           | 2        | 1        | 1.109          |  |  |  |
| 411        | 207                                | 11.581           | No         | No         | 383        | 166        | 13.081         | No         | No         | 17         | 36         | 3.729           | 11       | 5        | 2.121          |  |  |  |
| 860<br>864 | 861<br>838                         | 0.045<br>0.891   | Yes<br>Yes | Yes<br>Yes | 704<br>711 | 704<br>685 | 0.013<br>0.984 | Yes<br>Yes | Yes<br>Yes | 119<br>118 | 120<br>118 | 0.076<br>0.031  | 37<br>35 | 37<br>35 | 0.027<br>0.056 |  |  |  |
| 1041       | 955                                | 2.722            | Yes        | Yes        | 453        | 570        | 5.177          | No         | No         | 532        | 346        | 8.883           | 56       | 39       | 2.459          |  |  |  |
| 1051       | 1090                               | 1.182            | Yes        | Yes        | 612        | 687        | 2.932          | Yes        | Yes        | 394        | 352        | 2.178           | 45       | 51       | 0.867          |  |  |  |
| 983<br>931 | 957<br>974                         | 0.845<br>1.410   | Yes<br>Yes | Yes<br>Yes | 718<br>575 | 526<br>577 | 7.686<br>0.079 | No<br>Yes  | No<br>Yes  | 228<br>329 | 391<br>357 | 9.284<br>1.525  | 38<br>27 | 40<br>40 | 0.329<br>2.318 |  |  |  |
| 405        | 474                                | 3.308            | Yes        | Yes        | 376        | 296        | 4.381          | Yes        | Yes        | 27         | 178        | 14.870          | 1        | 0        | 1.414          |  |  |  |
| 402        | 372                                | 1.542            | Yes        | Yes        | 373        | 283        | 4.987          | Yes        | Yes        | 28         | 88         | 7.851           | 1        | 1        | 0.174          |  |  |  |
| 10         | 0                                  | 4.435<br>4.397   | Yes        | Yes        | 10         | 0          | 4.359<br>4.282 | Yes        | Yes        | 0          | 0          | 0.816           | 0        | 0        | 0.000          |  |  |  |
| 10<br>0    | 0                                  | 0.000            | Yes<br>Yes | Yes<br>Yes | 9          | 0          | 0.000          | Yes<br>Yes | Yes<br>Yes | 0          | 0          | 1.000<br>0.000  | 0        | 0        | 0.000          |  |  |  |
| 0          | 0                                  | 0.000            | Yes        | Yes        | 0          | 0          | 0.000          | Yes        | Yes        | 0          | 0          | 0.000           | 0        | 0        | 0.000          |  |  |  |
| 37         | 30                                 | 1.182            | Yes        | Yes        | 36         | 29         | 1.283          | Yes        | Yes        | 1          | 1          | 0.577           | 0        | 0        | 0.000          |  |  |  |
| 46<br>62   | 33<br>49                           | 2.044<br>1.682   | Yes<br>Yes | Yes<br>Yes | 45<br>60   | 31<br>49   | 2.247<br>1.533 | Yes<br>Yes | Yes<br>Yes | 1          | 0          | 0.816<br>1.528  | 0        | 0        | 0.000          |  |  |  |
| 66         | 55                                 | 1.435            | Yes        | Yes        | 65         | 52         | 1.700          | Yes        | Yes        | 1          | 3          | 1.270           | 0        | 0        | 0.000          |  |  |  |
| 105        | 126                                | 1.970            | Yes        | Yes        | 102        | 106        | 0.359          | Yes        | Yes        | 3          | 17         | 4.644           | 0        | 3        | 2.449          |  |  |  |
| 109        | 124                                | 1.406            | Yes        | Yes        | 106        | 113        | 0.637          | Yes        | Yes        | 3          | 9          | 2.711           | 0        | 2        | 2.000          |  |  |  |
| 6          | 9                                  | 1.163<br>1.807   | Yes<br>Yes | Yes<br>Yes | 4          | 9          | 2.119<br>0.990 | Yes<br>Yes | Yes<br>Yes | 1          | 0          | 1.732<br>1.633  | 1        | 0        | 1.155<br>1.000 |  |  |  |
| 10         | 2                                  | 3.311            | Yes        | Yes        | 9          | 2          | 3.081          | Yes        | Yes        | 1          | 0          | 1.155           | 0        | 0        | 0.577          |  |  |  |
| 11         | 1                                  | 4.161            | Yes        | Yes        | 11         | 1          | 3.962          | Yes        | Yes        | 1          | 0          | 1.155           | 0        | 0        | 0.577          |  |  |  |
| 4          | 7                                  | 1.279<br>2.517   | Yes        | Yes        | 3          | 7          | 1.443<br>2.380 | Yes        | Yes        | 0          | 0          | 0.816<br>0.816  | 0        | 0        | 0.000          |  |  |  |
| 3<br>2     | 2                                  | 0.246            | Yes<br>Yes | Yes<br>Yes | 2          | 1          | 0.447          | Yes<br>Yes | Yes<br>Yes | 0          | 1          | 1.091           | 0        | 0        | 0.000          |  |  |  |
| 2          | 2                                  | 0.246            | Yes        | Yes        | 2          | 1          | 0.447          | Yes        | Yes        | 0          | 1          | 1.091           | 0        | 0        | 0.000          |  |  |  |
| 41         | 42                                 | 0.155            | Yes        | Yes        | 38         | 39         | 0.188          | Yes        | Yes        | 3          | 3          | 0.198           | 1        | 0        | 1.000          |  |  |  |
| 39<br>354  | 26<br>362                          | 2.201<br>0.441   | Yes<br>Yes | Yes<br>Yes | 36<br>336  | 26<br>347  | 1.713<br>0.577 | Yes<br>Yes | Yes<br>Yes | 3<br>16    | 0<br>14    | 2.236<br>0.558  | 1        | 1        | 1.000<br>0.160 |  |  |  |
|            | 302                                | 0.441            | Yes        | Yes        | 340        | 318        | 1.195          | Yes        | Yes        | 15         | 32         | 3.426           | 1        | 1        | 0.160          |  |  |  |

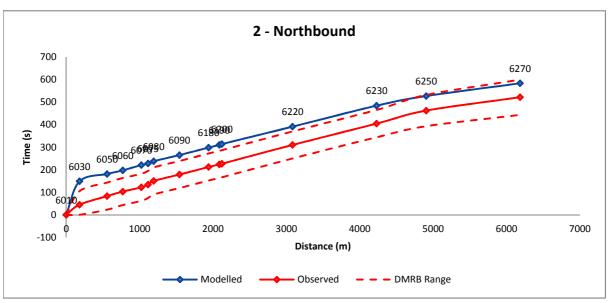


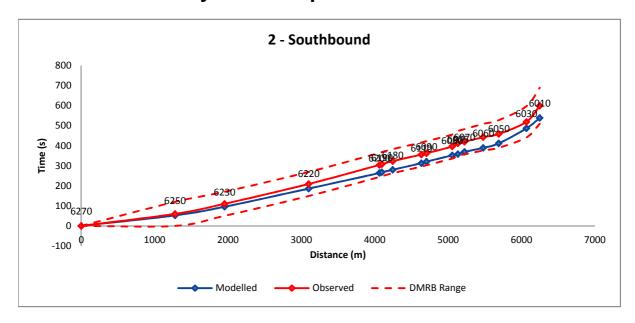


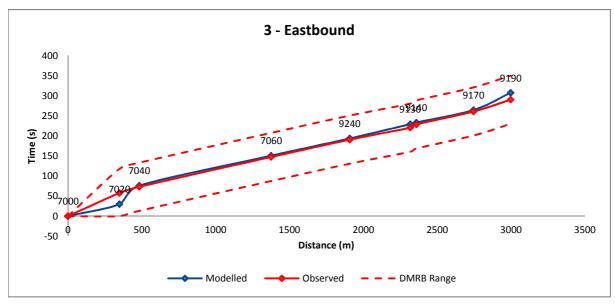

|            | Calibration /<br>Validation | Area | ID        | Site Location                                           | Dir           | Date             | Data Type     | Duplicate? | Ref                    | A-Node         | B-Node         | Factor | AM<br>Poak | Interp<br>eak | PM<br>Peak | Check    |
|------------|-----------------------------|------|-----------|---------------------------------------------------------|---------------|------------------|---------------|------------|------------------------|----------------|----------------|--------|------------|---------------|------------|----------|
| 5          | Calibration                 |      | 3         | Gisleham Road                                           | NB            | Jul-15           | ATC           | No         | 9600-5010              | 9600           | 5010           |        | Yes        | Yes           | Yes        | OK       |
| 6          | Calibration                 |      | 3         | Gisleham Road                                           | SB            | Jul-15           | ATC           | No         | 5010-9600              | 5010           | 9600           |        | Yes        | Yes           | Yes        | OK       |
| 7          | Calibration                 |      | 4         | A146 Beccles Road<br>A146 Beccles Road                  | EB<br>WB      | Jul-15<br>Jul-15 | ATC<br>ATC    | No<br>No   | 1514-4513<br>1513-4514 | 4514<br>4513   | 4513<br>4514   |        | Yes        | Yes           | Yes        | OK<br>OK |
| 9          | Calibration<br>Validation   |      | 5         | A146 Beccles Road A1145 Castleton Avenue                | EB            | Jul-15<br>Jul-15 | ATC           | No         | 5110-5060              | 5110           | 5060           |        | Yes        | Yes<br>Yes    | Yes<br>Yes | OK       |
| 10         | Validation                  |      | 5         | A1145 Castleton Avenue                                  | WB            | Jul-15           | ATC           | No         | 5060-5110              | 5060           | 5110           |        | Yes        | Yes           | Yes        | OK       |
| 11<br>12   | Validation<br>Validation    |      | 6         | A12 London Road<br>A12 London Road                      | NB<br>SB      | Jul-15<br>Jul-15 | ATC<br>ATC    | No<br>No   | 5390-1000<br>1000-5390 | 5390<br>1000   | 1000<br>5390   |        | Yes        | Yes           | Yes<br>Yes | OK<br>OK |
| 13         | Calibration                 |      | 7         | London Road South                                       | NEB           | Jul-15<br>Jul-15 | ATC           | No         | 9606-1040              | 9606           | 1040           |        | Yes        | Yes           | Yes        | OK       |
| 14         | Calibration                 |      | 7         | London Road South                                       | SWB           | Jul-15           | ATC           | No         | 1040-9606              | 1040           | 9606           |        | Yes        | Yes           | Yes        | OK       |
| 15         | Calibration                 |      | 8         | A12 Tom Crisp Way A12 Tom Crisp Way                     | NEB           | Jul-15           | ATC<br>ATC    | No         | 000-1001               | 3000           | 10015          |        | Yes        | Yes           | Yes        | OK       |
| 16<br>17   | Calibration<br>Calibration  |      | 8         | A12 Tom Crisp Way A1117 Elm Tree Road                   | SWB<br>NB     | Jul-15<br>Jul-15 | ATC           | No<br>No   | 0015-300<br>3030-3040  | 10015<br>3030  | 3000<br>3040   |        | Yes        | Yes           | Yes<br>Yes | OK<br>OK |
| 18         | Calibration                 |      | 9         | A1117 Elm Tree Road                                     | SB            | Jul-15           | ATC           | No         | 3040-3030              | 3040           | 3030           |        | Yes        | Yes           | Yes        | OK       |
| 19<br>20   | Validation<br>Validation    |      | 10        | A146 Beccles Road                                       | NEB<br>SWB    | Jul-15<br>Jul-15 | ATC<br>ATC    | No<br>No   | 0111-1010<br>0109-1011 | 10111          | 10109          |        | Yes        | Yes           | Yes        | OK<br>OK |
| 21         | Calibration                 |      | 11        | A146 Beccles Road<br>Kirkley Run                        | NWB           | Jul-15           | ATC           | No         | 0103-101               | 10103          | 5270           |        | Yes        | Yes<br>Yes    | Yes        | OK       |
| 22         | Calibration                 |      | 11        | Kirkley Run                                             | SEB           | Jul-15           | ATC           | No         | 270-1010               | 5270           | 10103          |        | Yes        | Yes           | Yes        | OK       |
| 23         | Calibration<br>Calibration  |      | 12        | A146 Waveney Drive<br>A146 Waveney Drive                | EB<br>WB      | Jul-15<br>Jul-15 | ATC<br>ATC    | No<br>No   | 0088-401<br>010-1008   | 10088<br>4010  | 4010<br>10088  |        | Yes        | Yes           | Yes        | OK<br>OK |
| 29         | Calibration                 |      | 15        | Katwijk Way                                             | NB            | Jul-15           | ATC           | No         | 040-1008               | 6040           | 10136          |        | Yes        | Yes           | Yes        | OK       |
| 30         | Calibration                 |      | 15        | Katwijk Way                                             | SB            | Jul-15           | ATC           | No         | 0136-604               | 10136          | 6040           |        | Yes        | Yes           | Yes        | OK       |
| 31         | Calibration                 |      | 16        | A12 Battery Green Road                                  | NB            | Jul-15           | ATC           | No.        | 3160-6150              | 6160           | 6150           |        | Yes        | Yes           | Yes        | OK       |
| 32         | Calibration<br>Validation   |      | 16<br>17  | A12 Battery Green Road A12 Old Nelson Street            | SB<br>NB      | Jul-15<br>Jul-15 | ATC<br>ATC    | No<br>No   | 6150-6160<br>6140-6130 | 6150<br>6140   | 6160<br>6130   |        | Yes        | Yes<br>Yes    | Yes<br>Yes | OK<br>OK |
| 34         | Validation                  |      | 17        | A12 Old Nelson Street                                   | SB            | Jul-15           | ATC           | No         | 3130-6140              | 6130           | 6140           |        | Yes        | Yes           | Yes        | OK       |
| 35         | Validation<br>Validation    |      | 18<br>18  | St Peter's Street St Peter's Street                     | EB<br>WB      | Jul-15<br>Jul-15 | ATC<br>ATC    | No<br>No   | 6070-6079<br>6075-6070 | 6070<br>6075   | 6075<br>6070   |        | Yes        | Yes           | Yes        | OK<br>OK |
| 36<br>37   | Calibration                 |      | 19        | St Peter's Street  Denmark Road                         | EB            | Jul-15<br>Jul-15 | ATC           | No         | 200-1013               | 7200           | 10139          |        | Yes        | Yes<br>Yes    | Yes<br>Yes | OK       |
| 38         | Calibration                 |      | 19        | Denmark Road                                            | WB            | Jul-15           | ATC           | No         | 0139-720               | 10139          | 7200           |        | Yes        | Yes           | Yes        | OK       |
| 39<br>40   | Validation                  |      | 20        | Rotterdam Road<br>Rotterdam Road                        | NEB<br>SWB    | Jul-15           | ATC<br>ATC    | No         | 7210-9130<br>9130-7210 | 7210<br>9130   | 9130<br>7210   |        | Yes        | Yes           | Yes        | OK       |
| 41         | Validation<br>Calibration   |      | 21        | Peto Way                                                | NB            | Jul-15<br>Jul-15 | ATC           | No<br>No   | 0190-7210              | 10190          | 7060           |        | Yes        | Yes           | Yes<br>Yes | OK<br>OK |
| 42         | Calibration                 |      | 21        | Peto Way                                                | SB            | Jul-15           | ATC           | No         | 060-1019               | 7060           | 10190          |        | Yes        | Yes           | Yes        | OK       |
| 43<br>44   | Calibration<br>Calibration  |      | 22        | A1117 Normanston Drive                                  | NEB           | Jul-15           | ATC           | No<br>No   | 7050-7060              | 7050           | 7060           |        | Yes        | Yes           | Yes        | OK       |
| 45         | Calibration                 |      | 23        | A1117 Normanston Drive A1144 Normanston Drive           | SWB           | Jul-15<br>Jul-15 | ATC<br>ATC    | No<br>No   | 7060-7050<br>9240-9130 | 7060<br>9240   | 7050<br>9130   |        | Yes        | Yes<br>Yes    | Yes<br>Yes | OK<br>OK |
| 46         | Calibration                 |      | 23        | A1144 Normanston Drive                                  | WB            | Jul-15           | ATC           | No         | 9130-9240              | 9130           | 9240           |        | Yes        | Yes           | Yes        | OK       |
| 47<br>48   | Calibration                 |      | 24        | Oulton Road Oulton Road                                 | EB<br>WB      | Jul-15<br>Jul-15 | ATC<br>ATC    | No<br>No   | 270-1001<br>0010-927   | 9270           | 10010<br>9270  |        | Yes        | Yes           | Yes        | OK       |
| 49         | Calibration<br>Calibration  |      | 24<br>25  | B1375 Gorleston Road                                    | NB            | Jul-15<br>Jul-15 | ATC           | No         | 3030-8040              | 10010<br>8030  | 8040           |        | Yes        | Yes<br>Yes    | Yes<br>Yes | OK<br>OK |
| 50         | Calibration                 |      | 25        | B1375 Gorleston Road                                    | SB            | Jul-15           | ATC           | No         | 3040-8030              | 8040           | 8030           |        | Yes        | Yes           | Yes        | OK       |
| 51         | Calibration                 |      | 26        | A1117 Millennium Way                                    | NB            | Jul-15           | ATC           | No         | 7070-7080              | 7070           | 7080           |        | Yes        | Yes           | Yes        | OK       |
| 52<br>53   | Calibration<br>Calibration  |      | 26<br>27  | A1117 Millennium Way A12 Yarmouth Road                  | SB<br>NWB     | Jul-15<br>Jul-15 | ATC<br>ATC    | No<br>No   | 7080-7070<br>0242-1024 | 7080<br>10242  | 7070<br>10248  |        | Yes        | Yes           | Yes<br>Yes | OK<br>OK |
| 54         | Calibration                 |      | 27        | A12 Yarmouth Road                                       | SEB           | Jul-15           | ATC           | No         | 0248-1024              | 10248          | 10242          |        | Yes        | Yes           | Yes        | OK       |
| 55<br>56   | Calibration<br>Calibration  |      | 28<br>28  | B1385 Corton Road<br>B1385 Corton Road                  | NB<br>SB      | Jul-15<br>Jul-15 | ATC<br>ATC    | No<br>No   | 9460-9480<br>9480-9460 | 9460<br>9480   | 9480<br>9460   |        | Yes        | Yes<br>Yes    | Yes        | OK<br>OK |
| 57         | Calibration                 |      | 29        | A12 Yarmouth Road                                       | NB            | Jul-15           | ATC           | No         | 0257-625               | 10257          | 6250           |        | Yes        | Yes           | Yes        | OK       |
| 58         | Calibration                 |      | 29        | A12 Yarmouth Road                                       | SB            | Jul-15           | ATC           | No         | 250-1025               | 6250           | 10257          |        | Yes        | Yes           | Yes        | OK       |
| 59<br>60   | Calibration                 |      | 30        | B1375 Parkhill<br>B1375 Parkhill                        | NB<br>SB      | Jul-15<br>Jul-15 | ATC<br>ATC    | No<br>No   | 0001-807<br>070-1000   | 10001<br>8070  | 8070<br>10001  |        | Yes        | Yes<br>Yes    | Yes<br>Yes | OK<br>OK |
| 61         | Calibration<br>Calibration  |      | 31        | B1073 Faikhiii<br>B1074 Bluderston Road                 | NB            | Jul-15           | ATC           | No         | 070-1000               | 10025          | 20026          |        | Yes        | Yes           | Yes        | OK       |
| 62         | Calibration                 |      | 31        | B1074 Bluderston Road                                   | SB            | Jul-15           | ATC           | No         | 0026-1002              | 20026          | 10025          |        | Yes        | Yes           | Yes        | OK       |
| 63<br>64   | Calibration<br>Calibration  |      | 32        | Fixton Road<br>Fixton Road                              | NB<br>SB      | Jul-15<br>Jul-15 | ATC<br>ATC    | No<br>No   | 440-1002<br>0024-944   | 9440<br>10024  | 10024<br>9440  |        | Yes        | Yes<br>Yes    | Yes<br>Yes | OK<br>OK |
| 65         | Validation                  |      | 33        | Coast Road                                              | NB            | Jul-15           | ATC           | No         | 510-1002               | 9510           | 10027          |        | Yes        | Yes           | Yes        | OK       |
| 66         | Validation                  |      | 33        | Coast Road                                              | SB            | Jul-15           | ATC           | No         | 0027-951               | 10027          | 9510           |        | Yes        | Yes           | Yes        | OK       |
| 67<br>75   | Validation<br>Calibration   | 06   | 3         | Katwijk Way A12YarmouthRd                               | NB<br>NB      | Jul-13<br>Jul-15 | TRADS<br>ANPR | No<br>No   | 7280-6060<br>5280-4520 | 7280<br>6280   | 6060<br>4520   |        | Yes        | Yes<br>Yes    | Yes<br>Yes | OK<br>OK |
| 76         | Calibration                 |      | 3         | A12YarmouthRd                                           | SB            | Jul-15           | ANPR          | No         | 1520-6280              | 4520           | 6280           |        | Yes        | Yes           | Yes        | OK       |
| 79         | Validation                  |      | 5         | A12 Pier Terrace                                        | NB            | Jul-15           | ANPR          | No         | 260-1002               | 1260           | 10023          |        | Yes        | Yes           | Yes        | OK       |
| 80<br>81   | Validation<br>Validation    |      | 5<br>6    | A12 Pier Terrace Saltwater Way                          | SB<br>NB      | Jul-15<br>Jul-15 | ANPR<br>ANPR  | No<br>No   | 0023-126<br>2050-2060  | 10023<br>2050  | 1260<br>2060   |        | Yes        | Yes           | Yes<br>Yes | OK<br>OK |
| 82         | Validation                  |      | 6         | Saltwater Way                                           | SB            | Jul-15           | ANPR          | No         | 2060-2050              | 2060           | 2050           |        | Yes        | Yes           | Yes        | OK       |
| 99         | Validation                  |      | 15        | North Quay Retail Park                                  | Entry         | Jul-15           | ANPR          | No         | 9220-9230              | 9220           | 9230           |        | Yes        | Yes           | Yes        | OK       |
| 100        | Validation<br>Validation    |      | 15<br>16  | North Quay Retail Park Links Road Car Park              | Exit<br>EB    | Jul-15<br>Jul-15 | ANPR<br>ANPR  | No<br>No   | 9230-9220<br>9602-9603 | 9230<br>9602   | 9220<br>9603   |        | Yes        | Yes           | Yes        | OK<br>OK |
| 102        | Validation                  |      | 16        | Links Road Car Park                                     | WB            | Jul-15           | ANPR          | No         | 9603-9602              | 9603           | 9602           |        | Yes        | Yes           | Yes        | OK       |
| 103        | Validation                  |      | 17        | Swimming Pool Road Car Park                             | EB<br>WB      | Jul-15           | ANPR          | No         | 090-1025               | 9090           | 10251          |        | Yes        | Yes           | Yes        | OK       |
| 104<br>106 | Validation<br>Validation    |      | 17<br>18  | Swimming Pool Road Car Park Battery Green Road Car Park | Exit          | Jul-15<br>Jul-15 | ANPR<br>ANPR  | No<br>No   | 0251-909<br>0127-1012  | 10251<br>10127 | 9090<br>10126  |        | Yes        | Yes<br>Yes    | Yes<br>Yes | OK<br>OK |
| 107        | Validation                  |      | 19        | Gordon Road Car Park Entry                              | Entry         | Jul-15           | ANPR          | No         | 3140-9050              | 6140           | 9050           |        | Yes        | Yes           | Yes        | OK       |
| 109        | Validation<br>Validation    |      | 20        | Surrey Street Car Park Entry                            | Entry         | Jul-15           | ANPR<br>ANPR  | No<br>No   | 0130-1013              | 10130          | 10131          |        | Yes        | Yes           | Yes        | OK       |
| 112<br>113 | Validation                  |      | 21        | Clapham Road Car Park Exit Clapham Road South           | Exit          | Jul-15<br>Jul-15 | ANPR          | No<br>No   | 0132-1011<br>0137-1011 | 10132<br>10137 | 10133          |        | Yes        | Yes           | Yes        | OK<br>OK |
| 114        | Validation                  |      | 22        | Clapham Road South                                      | Exit          | Jul-15           | ANPR          | No         | 0138-1013              | 10138          | 10137          |        | Yes        | Yes           | Yes        | OK       |
| 115        | Validation                  |      | 23        | St Johns Road Car Park                                  | Entry         | Jul-15           | ANPR<br>ANPR  | No<br>No   | 0083-1008              | 10083<br>10084 | 10084          |        | Yes        | Yes           | Yes        | OK       |
| 116<br>117 | Validation<br>Validation    |      | 23<br>24a | St Johns Road Car Park Kirkley Rise Car Park            | Exit          | Jul-15<br>Jul-15 | ANPR          | No<br>No   | 0084-1008<br>000-1025  | 4000           | 10083<br>10256 |        | Yes        | Yes           | Yes        | OK<br>OK |
| 118        | Validation                  |      | 24a       | Kirkley Rise Car Park                                   | Exit          | Jul-15           | ANPR          | No         | 0256-400               | 10256          | 4000           |        | Yes        | Yes           | Yes        | OK       |
| 119        | Validation                  |      | 24b       | Kirkley Rise Car Park                                   | Entry         | Jul-15           | ANPR          | No         | 300-1007               | 5300           | 10078          |        | Yes        | Yes           | Yes        | OK       |
| 120<br>121 | Validation<br>Validation    |      | 24b<br>25 | Kirkley Rise Car Park Kirkley Cliff Road Car Park       | Exit<br>Entry | Jul-15<br>Jul-15 | ANPR<br>ANPR  | No<br>No   | 0078-530<br>120-1007   | 10078<br>1120  | 5300<br>10075  |        | Yes        | Yes<br>Yes    | Yes<br>Yes | OK<br>OK |
| 122        | Validation                  |      | 25        | Kirkley Cliff Road Car Park                             | Exit          | Jul-15           | ANPR          | No         | 0075-112               | 10075          | 1120           |        | Yes        | Yes           | Yes        | OK       |
| 405        | Validation                  |      | 27<br>27  | Marine Parade<br>Marine Parade                          | Entry         | Jul-15           | ANPR          | No         | 0081-1008              | 10081          | 10082          |        | Yes        | Yes           | Yes        | OK       |
| 125        |                             |      |           |                                                         | Exit          | Jul-15           | ANPR          | No         | 0082-1008              | 10082          | 10081          |        | Yes        | Yes           | Yes        | OK       |
| 126<br>127 | Validation<br>Validation    |      | 28        | Asda Car Park                                           | Entry         | Jul-15           | ANPR          | No         | 000-1008               | 4000           | 10085          |        | Yes        | Yes           | Yes        | OK       |

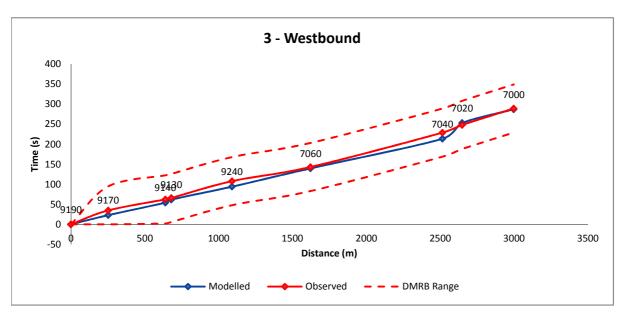

|              |             |                 |            |            |            |            |                 | Peak       |            |            |            |                 |          |          |                |
|--------------|-------------|-----------------|------------|------------|------------|------------|-----------------|------------|------------|------------|------------|-----------------|----------|----------|----------------|
|              |             | ALL VEHICLES    | S          |            |            |            | CAR             |            |            |            | LGV        |                 |          | HGV      |                |
| Observed     | Modelled    | GEH             | GEH Pass?  | Flow Pass? | Observed   | Modelled   | GEH             | GEH Pass?  | Flow Pass? | Observed   | Modelled   | GEH             | Observed | Modelled | GEH            |
| 42           | 27          | 2.594           | Yes        | Yes        | 16         | 12         | 1.019           | Yes        | Yes        | 26         | 15         | 2.417           | 1        | 0        | 1.033          |
| 26           | 20          | 1.342           | Yes        | Yes        | 12         | 12         | 0.115           | Yes        | Yes        | 13         | 7          | 1.933           | 1 25     | 1        | 0.068          |
| 896<br>664   | 924<br>653  | 0.928<br>0.429  | Yes<br>Yes | Yes<br>Yes | 383<br>193 | 405<br>182 | 1.134<br>0.803  | Yes<br>Yes | Yes<br>Yes | 489<br>448 | 494<br>448 | 0.248           | 25<br>24 | 25<br>23 | 0.000          |
| 460          | 519         | 2.690           | Yes        | Yes        | 275        | 279        | 0.240           | Yes        | Yes        | 172        | 229        | 3.997           | 12       | 11       | 0.331          |
| 448          | 497         | 2.278           | Yes        | Yes        | 255        | 196        | 3.921           | Yes        | Yes        | 180        | 283        | 6.751           | 12       | 18       | 1.443          |
| 759<br>775   | 617<br>794  | 5.403<br>0.683  | No<br>Yes  | No<br>Yes  | 375<br>460 | 351<br>512 | 1.282<br>2.365  | Yes<br>Yes | Yes<br>Yes | 357<br>294 | 256<br>272 | 5.784<br>1.316  | 26<br>21 | 10<br>10 | 3.771<br>2.764 |
| 520          | 504         | 0.718           | Yes        | Yes        | 287        | 275        | 0.686           | Yes        | Yes        | 218        | 213        | 0.315           | 16       | 16       | 0.031          |
| 499          | 483         | 0.728           | Yes        | Yes        | 270        | 258        | 0.708           | Yes        | Yes        | 221        | 216        | 0.347           | 9        | 9        | 0.169          |
| 502<br>708   | 559<br>768  | 2.475<br>2.227  | Yes<br>Yes | Yes<br>Yes | 383<br>520 | 431<br>540 | 2.371<br>0.891  | Yes<br>Yes | Yes<br>Yes | 111<br>174 | 120<br>211 | 0.885<br>2.667  | 8<br>14  | 8<br>17  | 0.117<br>0.762 |
| 421          | 417         | 0.177           | Yes        | Yes        | 254        | 246        | 0.490           | Yes        | Yes        | 159        | 164        | 0.364           | 8        | 7        | 0.186          |
| 417          | 448         | 1.485           | Yes        | Yes        | 256        | 278        | 1.323           | Yes        | Yes        | 152        | 161        | 0.750           | 9        | 9        | 0.042          |
| 535<br>491   | 434<br>186  | 4.599<br>16.562 | Yes<br>No  | No<br>No   | 312<br>332 | 193<br>67  | 7.489<br>18.774 | No<br>No   | No<br>No   | 213<br>148 | 228<br>112 | 1.044<br>3.168  | 11<br>10 | 13<br>7  | 0.653<br>1.107 |
| 219          | 190         | 2.028           | Yes        | Yes        | 155        | 153        | 0.141           | Yes        | Yes        | 62         | 35         | 3.877           | 2        | 2        | 0.171          |
| 183          | 178         | 0.372           | Yes        | Yes        | 132        | 131        | 0.065           | Yes        | Yes        | 49         | 45         | 0.619           | 2        | 2        | 0.000          |
| 221<br>431   | 221<br>433  | 0.000<br>0.112  | Yes<br>Yes | Yes<br>Yes | 140<br>233 | 142<br>235 | 0.159<br>0.160  | Yes<br>Yes | Yes<br>Yes | 75<br>189  | 79<br>189  | 0.430           | 6<br>10  | 9        | 3.367<br>0.182 |
| 307          | 282         | 1.476           | Yes        | Yes        | 186        | 180        | 0.407           | Yes        | Yes        | 101        | 93         | 0.762           | 21       | 9        | 3.167          |
| 225          | 221         | 0.268           | Yes        | Yes        | 165        | 212        | 3.410           | Yes        | Yes        | 46         | 8          | 7.292           | 14       | 1        | 4.747          |
| 457          | 467         | 0.479           | Yes        | Yes        | 241        | 246        | 0.348           | Yes        | Yes        | 206        | 211        | 0.326           | 10       | 10       | 0.045          |
| 911<br>630   | 881<br>498  | 1.006<br>5.558  | Yes<br>No  | Yes<br>No  | 581<br>502 | 550<br>275 | 1.293<br>11.533 | Yes<br>No  | Yes<br>No  | 309<br>104 | 308<br>211 | 0.036<br>8.538  | 22<br>24 | 23<br>12 | 0.264<br>2.779 |
| 577          | 788         | 8.082           | No         | No         | 449        | 553        | 4.635           | Yes        | No         | 114        | 221        | 8.245           | 13       | 14       | 0.169          |
| 624          | 391         | 10.348          | No<br>No   | No<br>No   | 289        | 348        | 3.328           | Yes        | Yes        | 324        | 41         | 20.960          | 11       | 2        | 3.594          |
| 510<br>261   | 294<br>252  | 10.757<br>0.554 | No<br>Yes  | No<br>Yes  | 365<br>182 | 225<br>180 | 8.138<br>0.112  | No<br>Yes  | No<br>Yes  | 127<br>77  | 62<br>69   | 6.644<br>0.879  | 18<br>3  | 7        | 3.193<br>0.073 |
| 406          | 406         | 0.012           | Yes        | Yes        | 290        | 304        | 0.805           | Yes        | Yes        | 107        | 95         | 1.230           | 8        | 7        | 0.453          |
| 151          | 124         | 2.262           | Yes        | Yes        | 97         | 95         | 0.217           | Yes        | Yes        | 52         | 28         | 3.744           | 2        | 1        | 0.640          |
| 146<br>423   | 120<br>401  | 2.275<br>1.078  | Yes<br>Yes | Yes<br>Yes | 101<br>295 | 82<br>294  | 1.937<br>0.044  | Yes<br>Yes | Yes<br>Yes | 45<br>120  | 36<br>100  | 1.396<br>1.896  | 1<br>8   | 7        | 0.938<br>0.453 |
| 609          | 588         | 0.848           | Yes        | Yes        | 335        | 320        | 0.802           | Yes        | Yes        | 264        | 258        | 0.394           | 10       | 10       | 0.040          |
| 608          | 598         | 0.399           | Yes        | Yes        | 297        | 297        | 0.023           | Yes        | Yes        | 298        | 289        | 0.537           | 12       | 12       | 0.057          |
| 648<br>238   | 641<br>222  | 0.291<br>1.055  | Yes<br>Yes | Yes<br>Yes | 371<br>142 | 361<br>161 | 0.502<br>1.565  | Yes<br>Yes | Yes<br>Yes | 266<br>90  | 272<br>56  | 0.366<br>3.979  | 12<br>6  | 8<br>5   | 1.208<br>0.527 |
| 323          | 292         | 1.740           | Yes        | Yes        | 211        | 200        | 0.785           | Yes        | Yes        | 102        | 86         | 1.675           | 9        | 6        | 1.095          |
| 371          | 286         | 4.664           | Yes        | Yes        | 205        | 184        | 1.532           | Yes        | Yes        | 160        | 96         | 5.618           | 6        | 6        | 0.156          |
| 353          | 355         | 0.100           | Yes        | Yes        | 220        | 221<br>410 | 0.076<br>0.941  | Yes        | Yes        | 126        | 127        | 0.089           | 7<br>8   | 7        | 0.094<br>0.050 |
| 543<br>702   | 523<br>655  | 0.860<br>1.804  | Yes<br>Yes | Yes<br>Yes | 429<br>570 | 561        | 0.384           | Yes<br>Yes | Yes<br>Yes | 105<br>119 | 105<br>81  | 3.800           | 13       | 8<br>13  | 0.030          |
| 545          | 569         | 1.012           | Yes        | Yes        | 443        | 468        | 1.154           | Yes        | Yes        | 89         | 89         | 0.000           | 13       | 12       | 0.213          |
| 510          | 601         | 3.850           | Yes        | Yes        | 448        | 473<br>471 | 1.189           | Yes        | Yes        | 55<br>215  | 120        | 6.901           | 7<br>15  | 8        | 0.225          |
| 702<br>601   | 702<br>572  | 0.009<br>1.197  | Yes<br>Yes | Yes<br>Yes | 472<br>380 | 358        | 0.029<br>1.132  | Yes<br>Yes | Yes<br>Yes | 206        | 215<br>199 | 0.026<br>0.518  | 15       | 16<br>15 | 0.319<br>0.032 |
| 104          | 104         | 0.025           | Yes        | Yes        | 88         | 89         | 0.066           | Yes        | Yes        | 14         | 14         | 0.033           | 1        | 1        | 0.236          |
| 93           | 93          | 0.013           | Yes        | Yes        | 77         | 77         | 0.014           | Yes        | Yes        | 16         | 16         | 0.094           | 0        | 0        | 0.866          |
| 656<br>730   | 687<br>672  | 1.180<br>2.180  | Yes<br>Yes | Yes<br>Yes | 561<br>530 | 574<br>479 | 0.564<br>2.271  | Yes<br>Yes | Yes<br>Yes | 76<br>182  | 100<br>176 | 2.558<br>0.480  | 20<br>17 | 13<br>17 | 1.692<br>0.069 |
| 315          | 304         | 0.597           | Yes        | Yes        | 257        | 247        | 0.614           | Yes        | Yes        | 51         | 51         | 0.035           | 7        | 6        | 0.200          |
| 485          | 430         | 2.571           | Yes        | Yes        | 375        | 375        | 0.013           | Yes        | Yes        | 101        | 46         | 6.415           | 9        | 9        | 0.084          |
| 219<br>143   | 229<br>173  | 0.677<br>2.428  | Yes<br>Yes | Yes<br>Yes | 144<br>21  | 154<br>51  | 0.809<br>5.101  | Yes<br>No  | Yes<br>Yes | 70<br>115  | 70<br>115  | 0.015<br>0.035  | 5<br>7   | 5<br>7   | 0.171<br>0.144 |
| 56           | 57          | 0.133           | Yes        | Yes        | 8          | 9          | 0.343           | Yes        | Yes        | 47         | 47         | 0.024           | 1        | 1        | 0.160          |
| 76           | 118         | 4.264           | Yes        | Yes        | 7          | 49         | 7.851           | No         | Yes        | 67         | 67         | 0.041           | 2        | 2        | 0.000          |
| 51<br>69     | 23<br>196   | 4.653<br>11.087 | Yes<br>No  | Yes<br>No  | 5<br>14    | 15<br>107  | 3.113<br>12.001 | Yes<br>No  | Yes<br>Yes | 44<br>54   | 8<br>89    | 7.060<br>4.189  | 2        | 0        | 2.121<br>1.500 |
| 439          | 254         | 9.938           | No         | No         | 423        | 196        | 12.001          | No         | No         | 10         | 52         | 7.543           | 6        | 6        | 0.000          |
| 1579         | 1575        | 0.101           | Yes        | Yes        | 1388       | 1389       | 0.027           | Yes        | Yes        | 173        | 167        | 0.460           | 18       | 19       | 0.232          |
| 1019<br>1104 | 1023<br>976 | 0.125<br>3.969  | Yes<br>Yes | Yes<br>Yes | 909<br>582 | 887<br>653 | 0.734<br>2.877  | Yes<br>Yes | Yes<br>Yes | 91<br>499  | 110<br>308 | 1.895<br>9.493  | 19<br>24 | 26<br>15 | 1.476<br>2.003 |
| 1591         | 1583        | 0.201           | Yes        | Yes        | 1014       | 991        | 0.730           | Yes        | Yes        | 539        | 557        | 0.772           | 38       | 35       | 0.493          |
| 1114         | 1209        | 2.787           | Yes        | Yes        | 852        | 747        | 3.705           | Yes        | Yes        | 228        | 440        | 11.588          | 34       | 22       | 2.274          |
| 1133         | 1017        | 3.538           | Yes        | Yes        | 749<br>274 | 666<br>277 | 3.135           | Yes        | Yes        | 370<br>24  | 331<br>151 | 2.095           | 13<br>0  | 20<br>0  | 1.626          |
| 298<br>333   | 428<br>245  | 6.823<br>5.176  | No<br>No   | No<br>Yes  | 309        | 189        | 0.181<br>7.605  | Yes<br>No  | Yes<br>No  | 24         | 151<br>56  | 13.577<br>5.060 | 0        | 0        | 0.000          |
| 9            | 0           | 4.243           | Yes        | Yes        | 9          | 0          | 4.243           | Yes        | Yes        | 0          | 0          | 0.000           | 0        | 0        | 0.000          |
| 8            | 2           | 2.683           | Yes        | Yes        | 8          | 2          | 2.683           | Yes        | Yes        | 0          | 0          | 0.000           | 0        | 0        | 0.000          |
| 0            | 0           | 2.000<br>0.000  | Yes<br>Yes | Yes<br>Yes | 0          | 0          | 2.000<br>0.000  | Yes<br>Yes | Yes<br>Yes | 0          | 0          | 0.000           | 0        | 0        | 0.000          |
| 16           | 15          | 0.254           | Yes        | Yes        | 16         | 15         | 0.254           | Yes        | Yes        | 0          | 0          | 0.000           | 0        | 0        | 0.000          |
| 2            | 0           | 2.000           | Yes        | Yes        | 1          | 0          | 1.414           | Yes        | Yes        | 1          | 0          | 1.414           | 0        | 0        | 0.000          |
| 3<br>15      | 9           | 2.449<br>1.732  | Yes<br>Yes | Yes<br>Yes | 3<br>15    | 9          | 2.449<br>1.732  | Yes<br>Yes | Yes<br>Yes | 0          | 0          | 0.000           | 0        | 0        | 0.000          |
| 24           | 35          | 2.025           | Yes        | Yes        | 22         | 23         | 0.211           | Yes        | Yes        | 2          | 11         | 3.530           | 0        | 1        | 1.414          |
| 49           | 76          | 3.415           | Yes        | Yes        | 46         | 61         | 2.051           | Yes        | Yes        | 3          | 14         | 3.773           | 0        | 1        | 1.414          |
| 8<br>4       | 18<br>7     | 2.774           | Yes        | Yes        | 8          | 17         | 2.546           | Yes        | Yes        | 0          | 1          | 1.414           | 0        | 0        | 0.000          |
| 3            | 2           | 1.279<br>0.632  | Yes<br>Yes | Yes<br>Yes | 2          | 5<br>2     | 0.471           | Yes<br>Yes | Yes<br>Yes | 0<br>1     | 0          | 1.414           | 0        | 0        | 1.414<br>0.000 |
| 11           | 7           | 1.333           | Yes        | Yes        | 10         | 7          | 1.029           | Yes        | Yes        | 1          | 0          | 1.414           | 0        | 0        | 0.000          |
| 4            | 0           | 2.828           | Yes        | Yes        | 4          | 0          | 2.828           | Yes        | Yes        | 0          | 0          | 0.000           | 0        | 0        | 0.000          |
| 1            | 3           | 0.816<br>1.414  | Yes<br>Yes | Yes<br>Yes | 1          | 2          | 0.816<br>0.816  | Yes<br>Yes | Yes<br>Yes | 0          | 0          | 0.000<br>1.414  | 0        | 0        | 0.000          |
| 1            | 3           | 1.414           | Yes        | Yes        | 1          | 2          | 0.816           | Yes        | Yes        | 0          | 1          | 1.414           | 0        | 0        | 0.000          |
| 18           | 15          | 0.739           | Yes        | Yes        | 17         | 15         | 0.500           | Yes        | Yes        | 1          | 0          | 1.414           | 0        | 0        | 0.000          |
| 28<br>307    | 34<br>286   | 1.078<br>1.220  | Yes<br>Yes | Yes<br>Yes | 23<br>288  | 19<br>278  | 0.873<br>0.594  | Yes<br>Yes | Yes<br>Yes | 4<br>19    | 15<br>8    | 3.569<br>2.994  | 0        | 0        | 1.414<br>0.000 |
| 336          | 365         | 1.549           | Yes        | Yes        | 315        | 305        | 0.568           | Yes        | Yes        | 21         | 60         | 6.128           | 0        | 0        | 0.000          |
|              |             |                 |            |            |            |            |                 |            |            |            |            |                 |          |          |                |

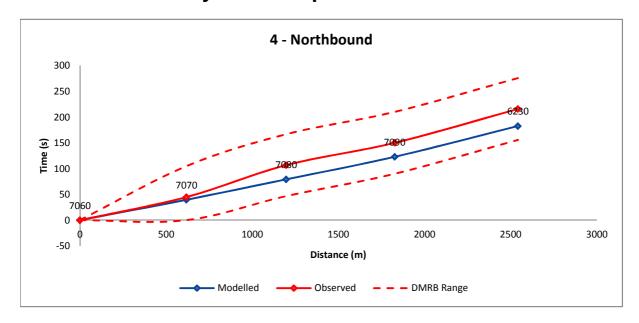


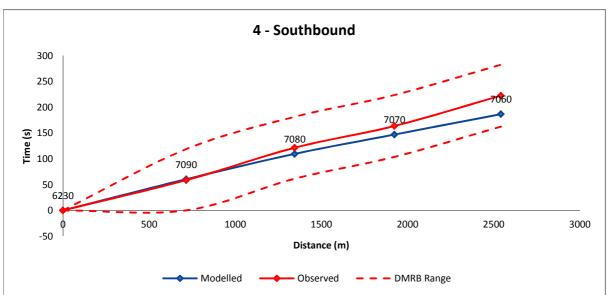



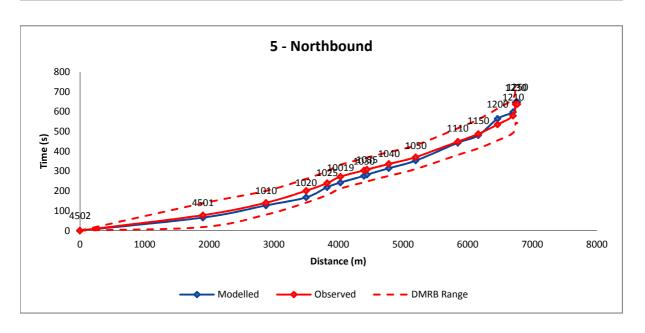


# Appendix F

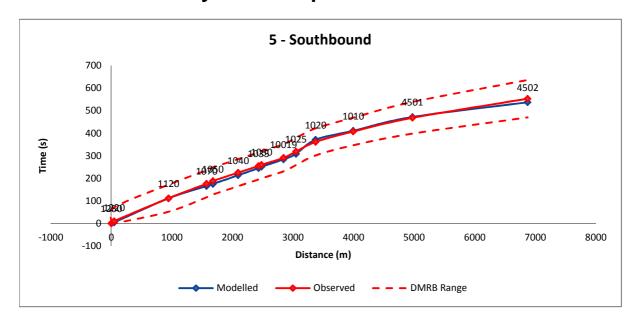

**JOURNEY TIME GRAPHS** 

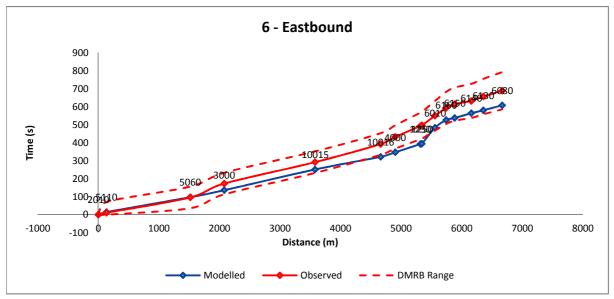


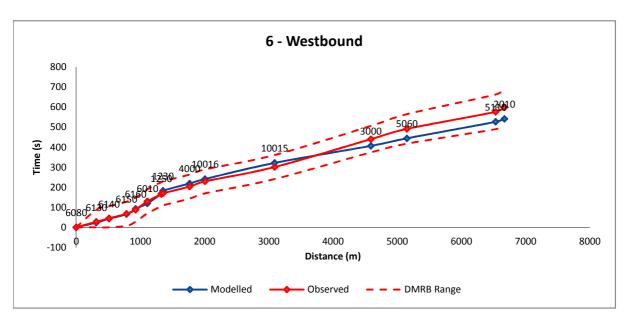



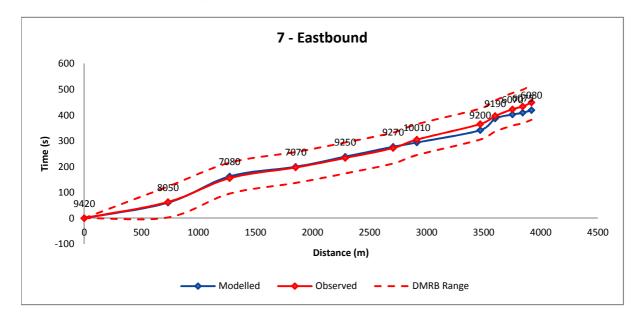



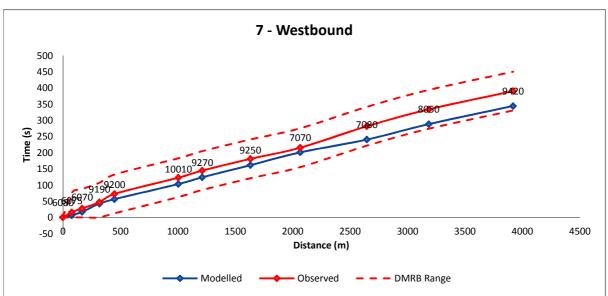



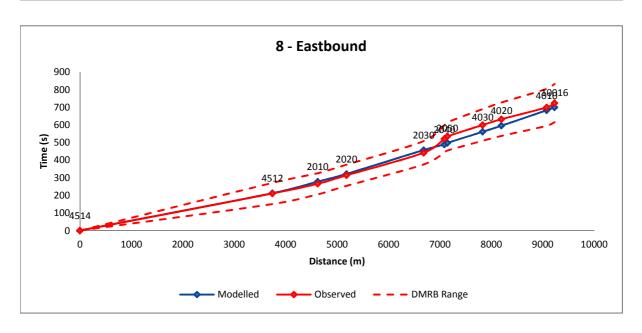



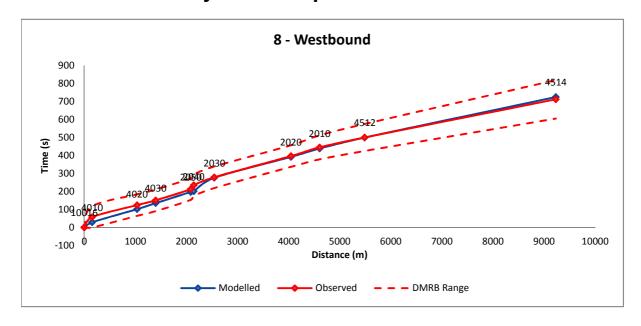



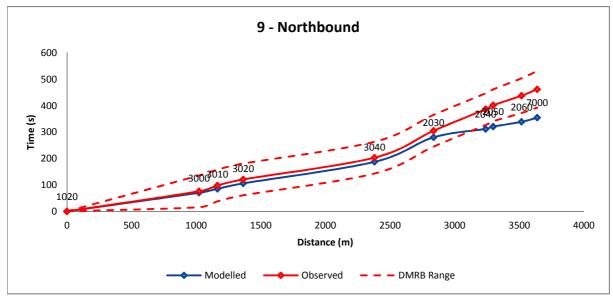



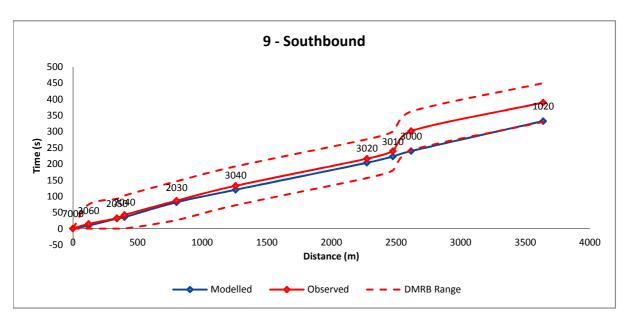



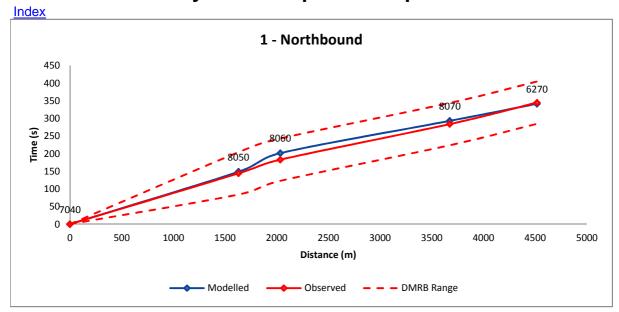



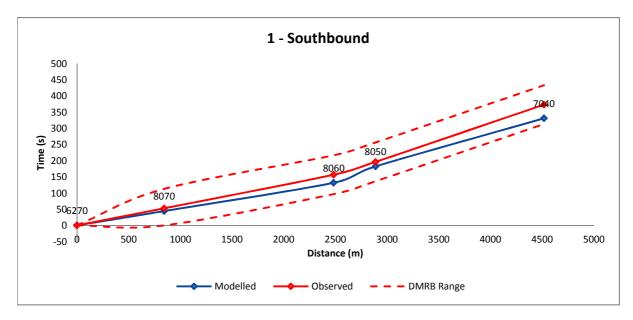



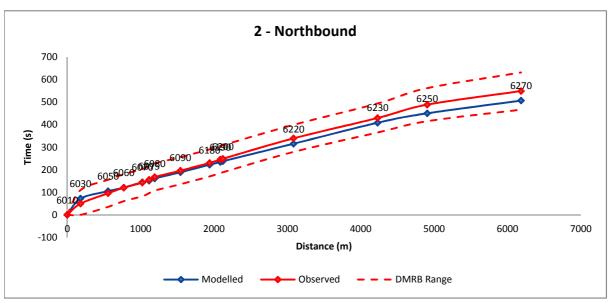



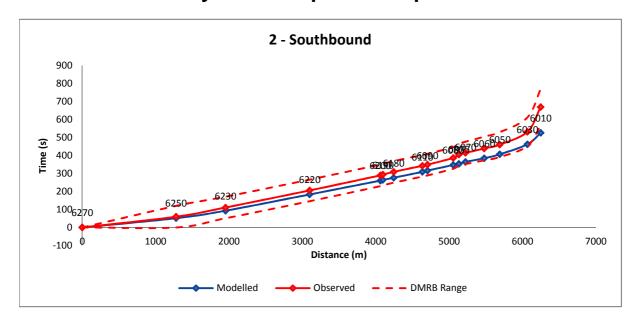



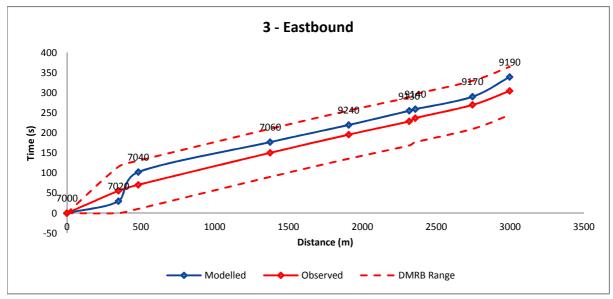



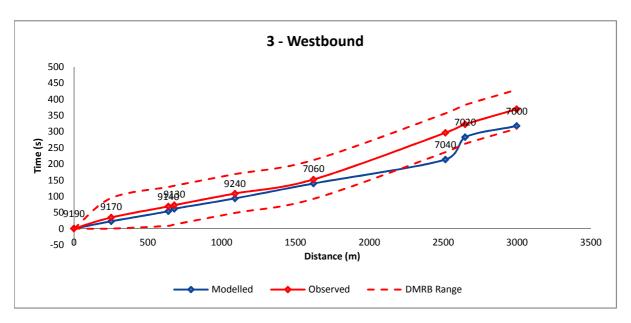



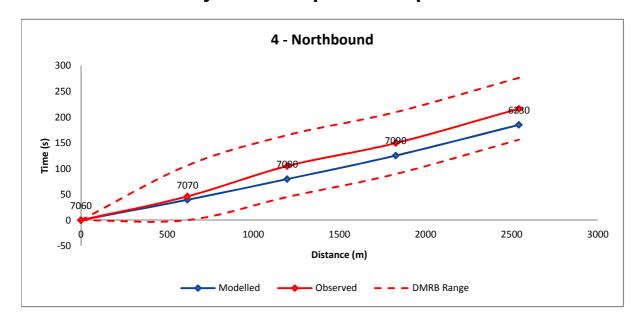



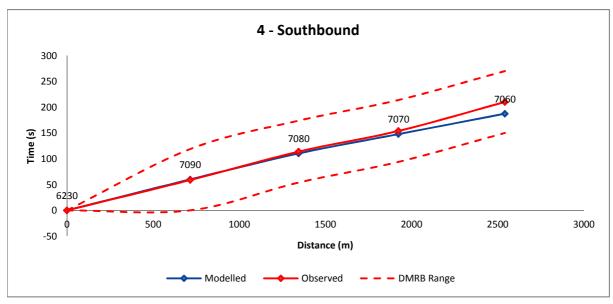



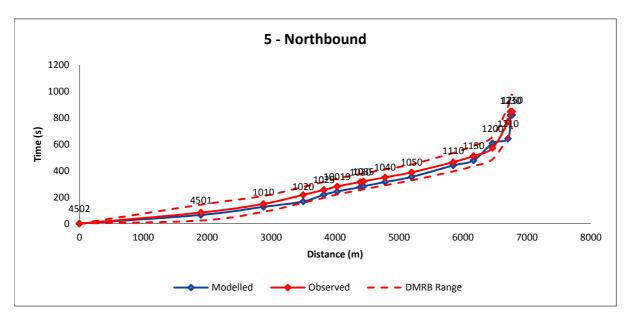



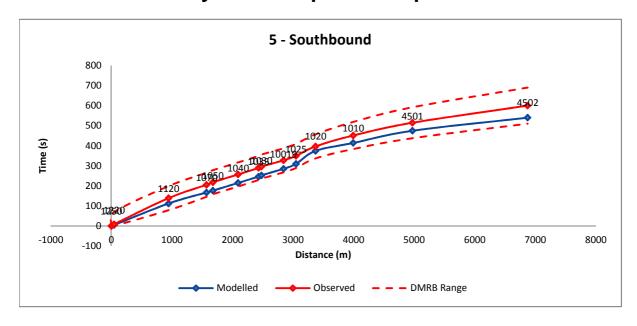



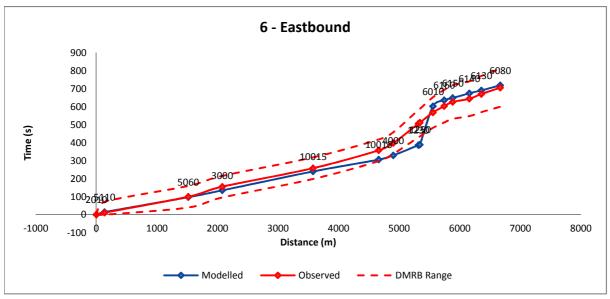



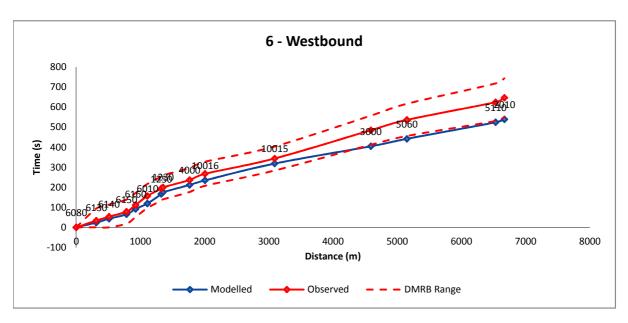



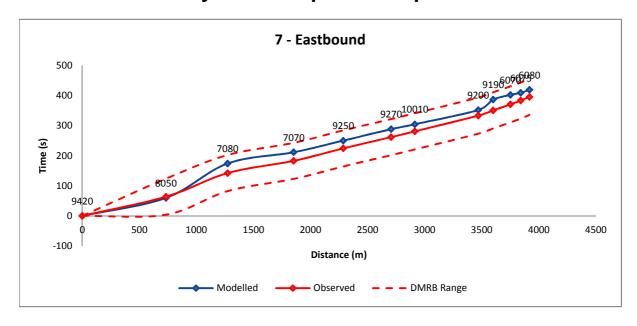



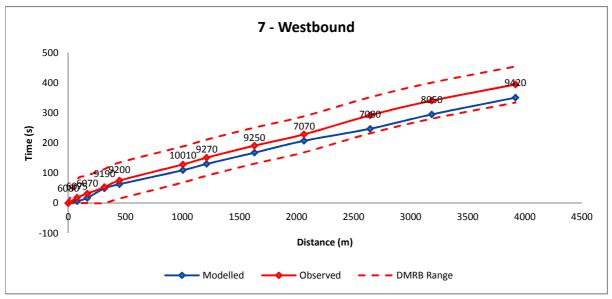



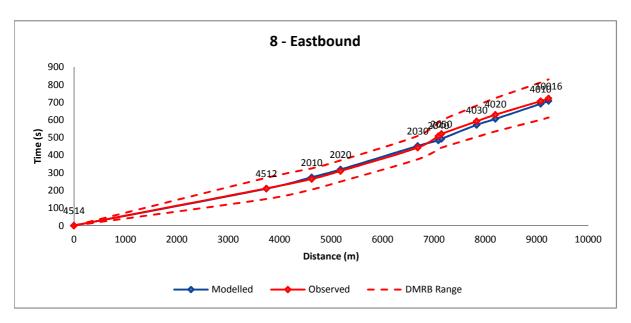



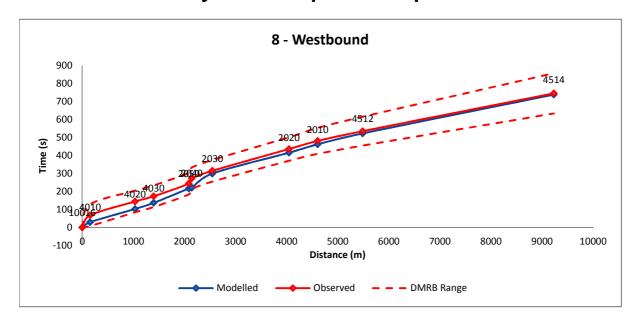



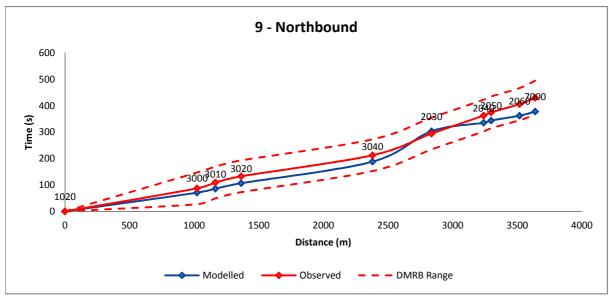



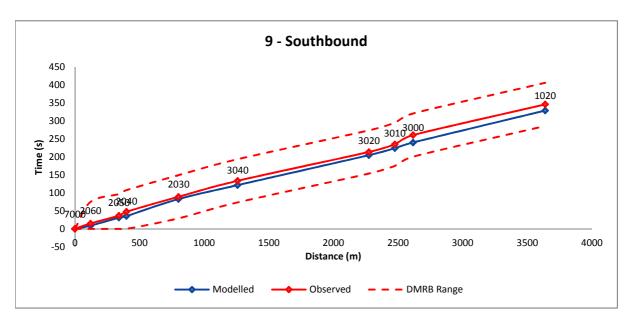



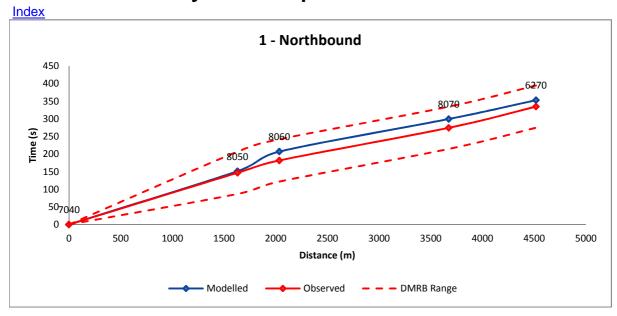



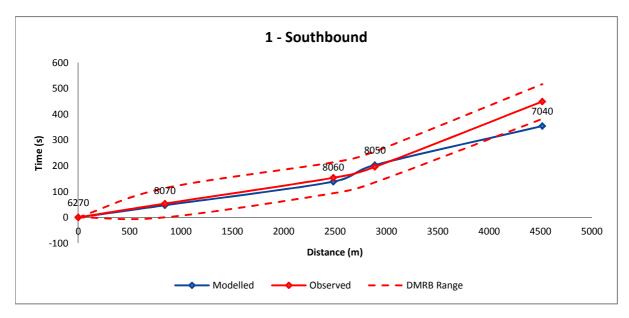



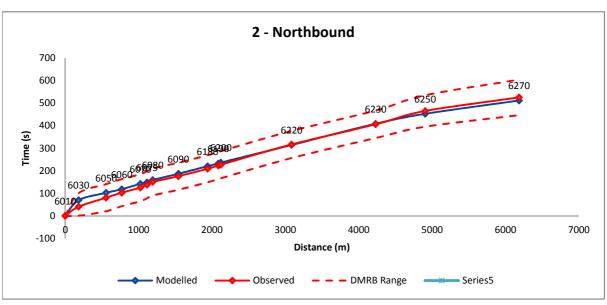



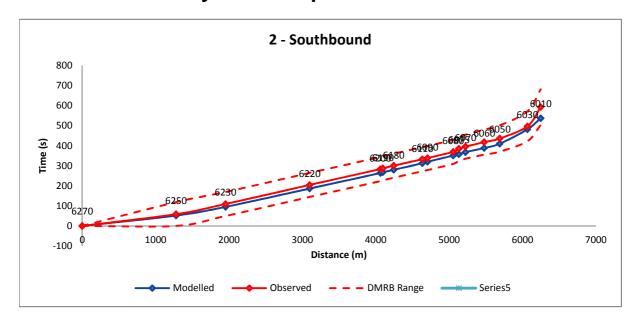



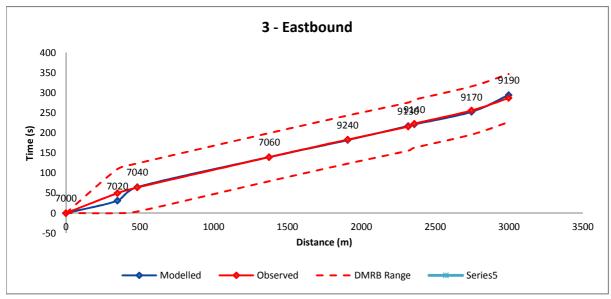



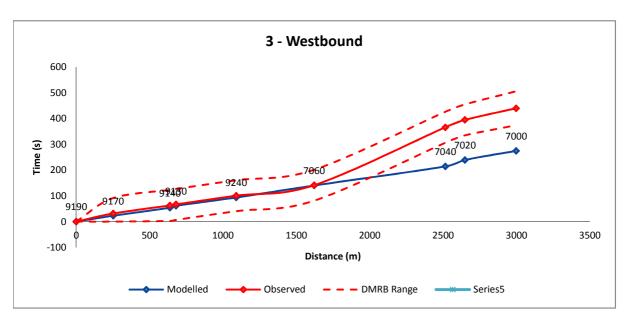



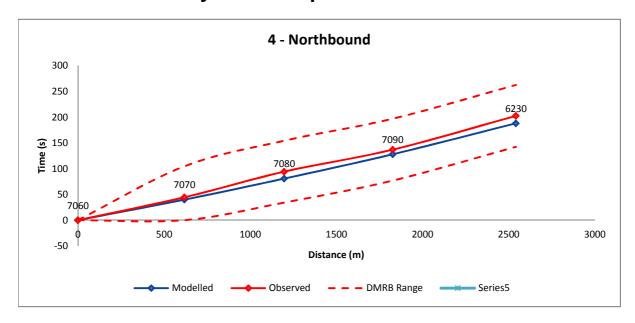



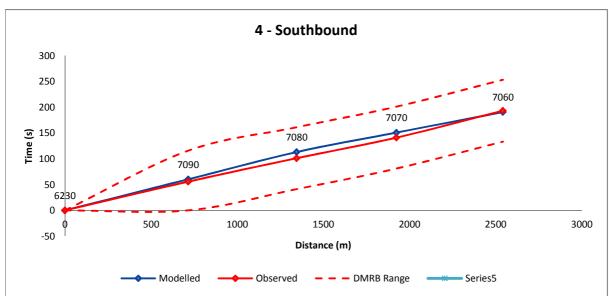



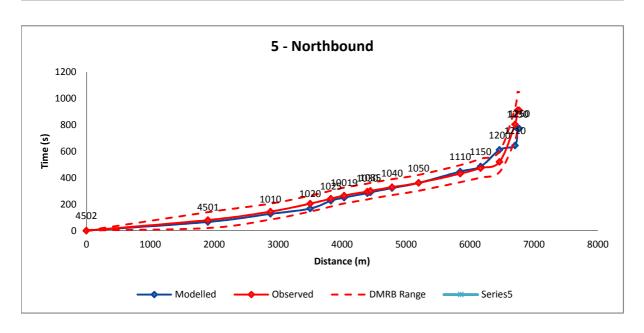



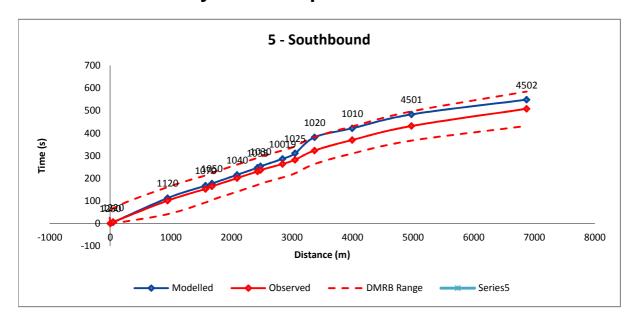



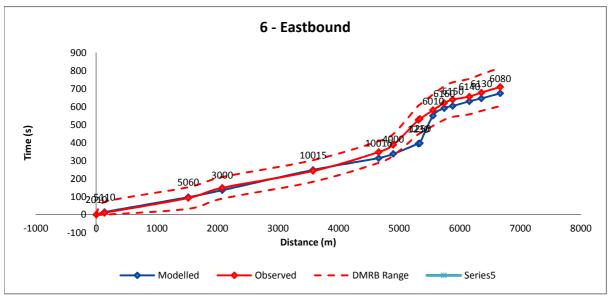



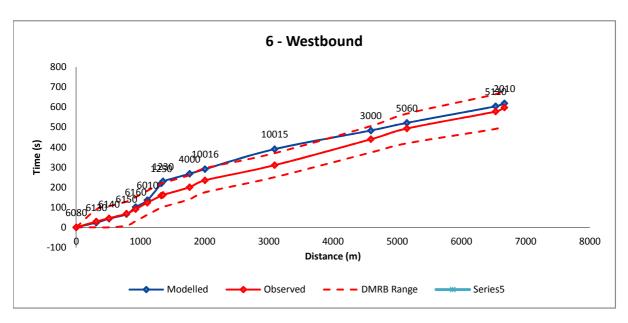



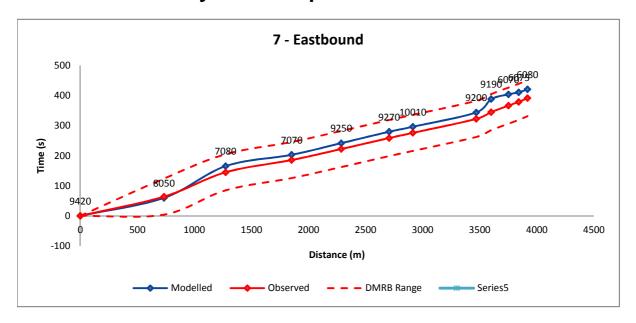



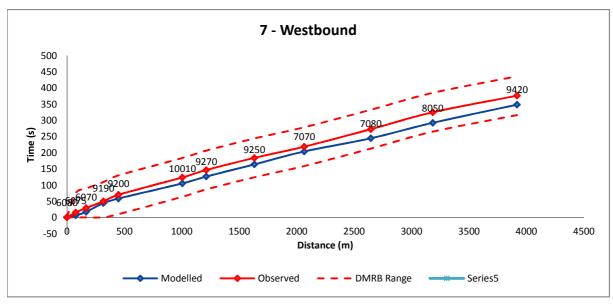



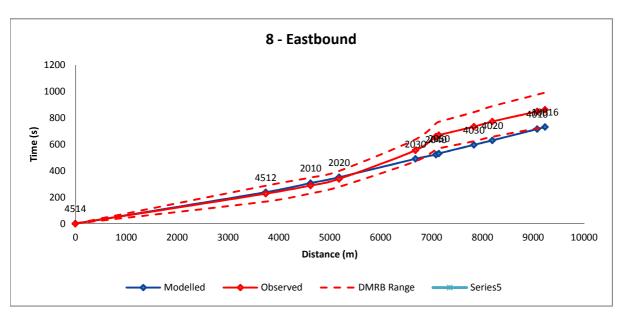



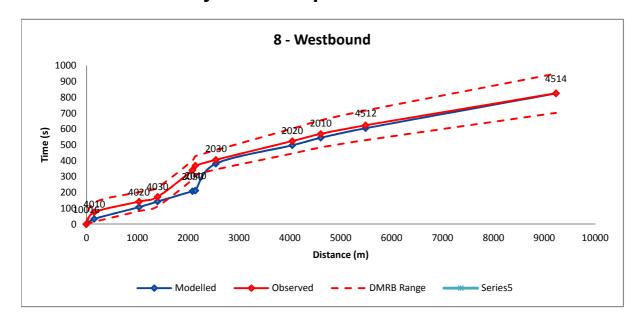



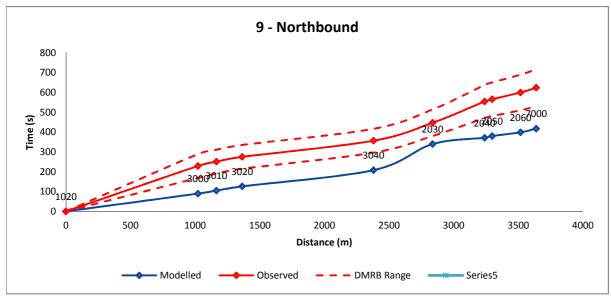



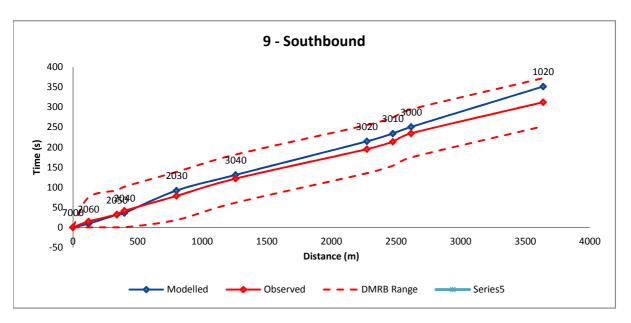



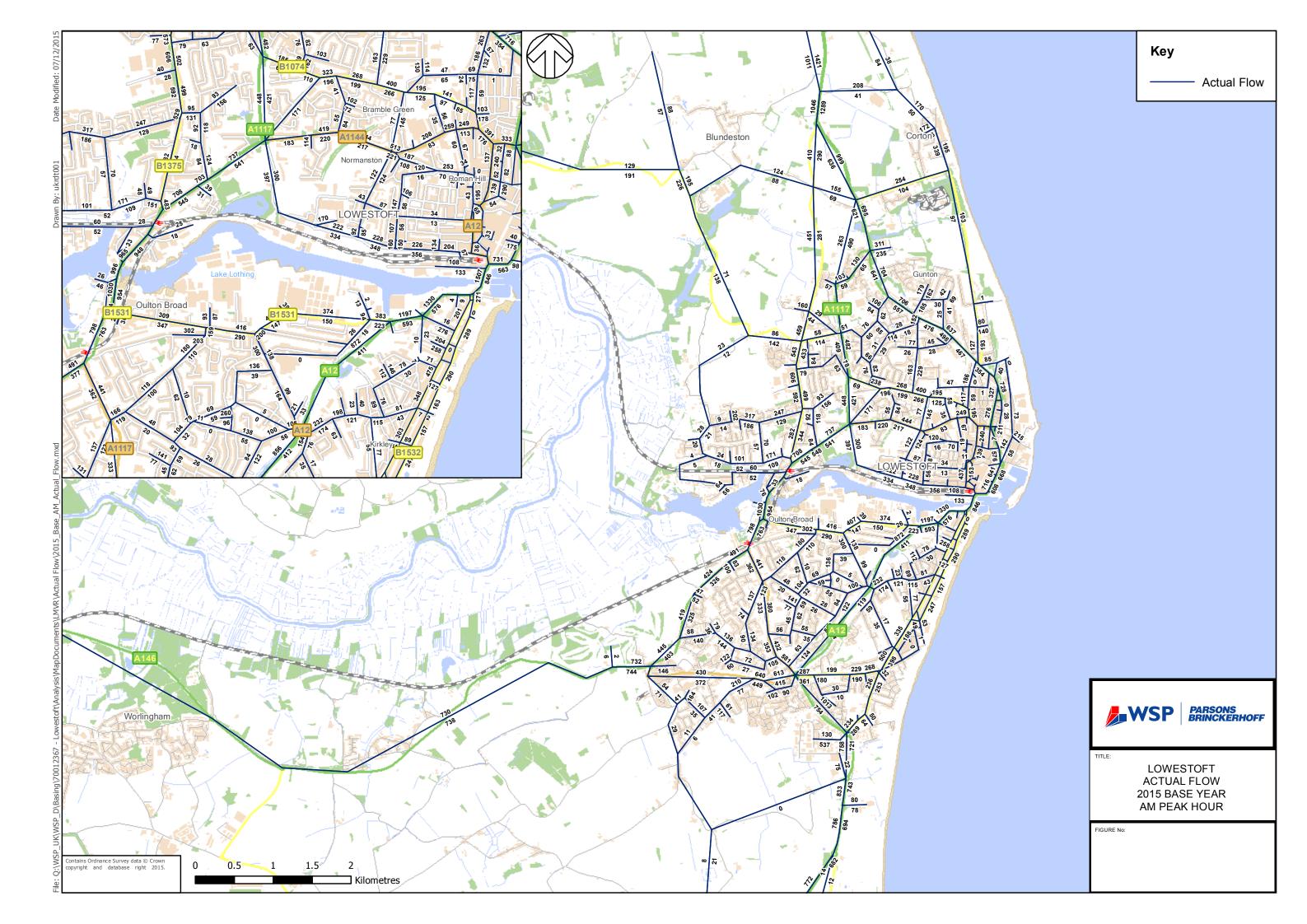



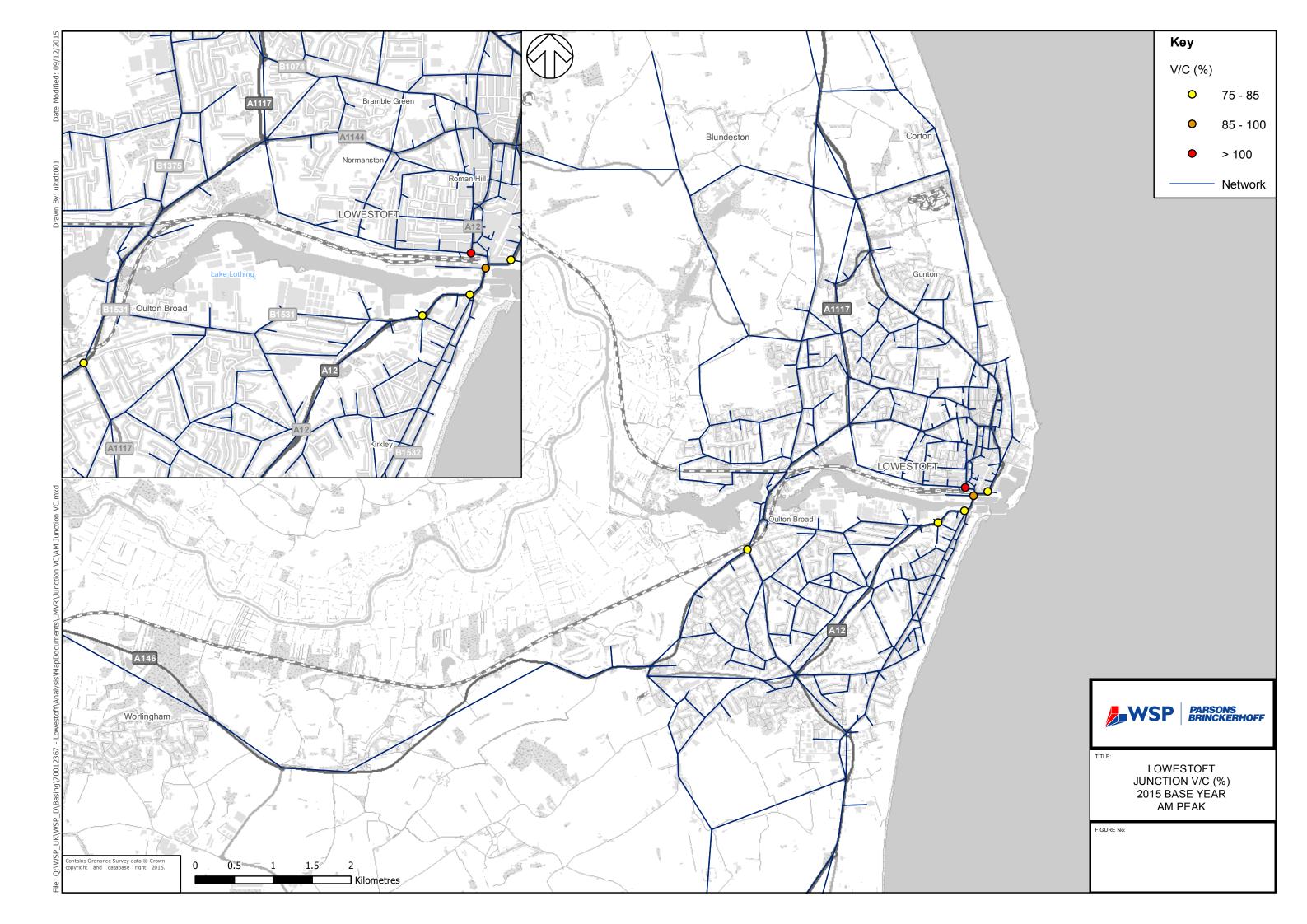



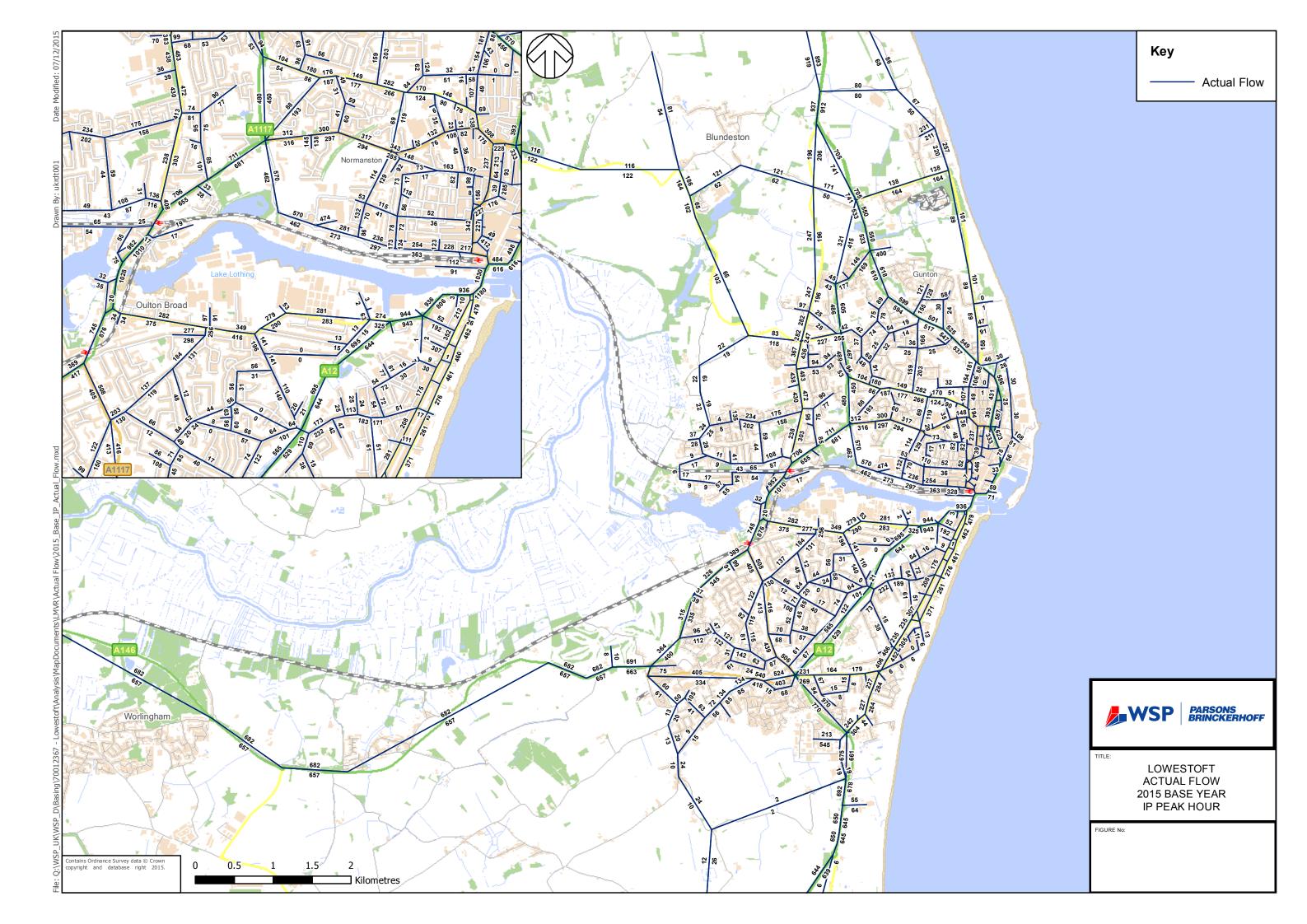



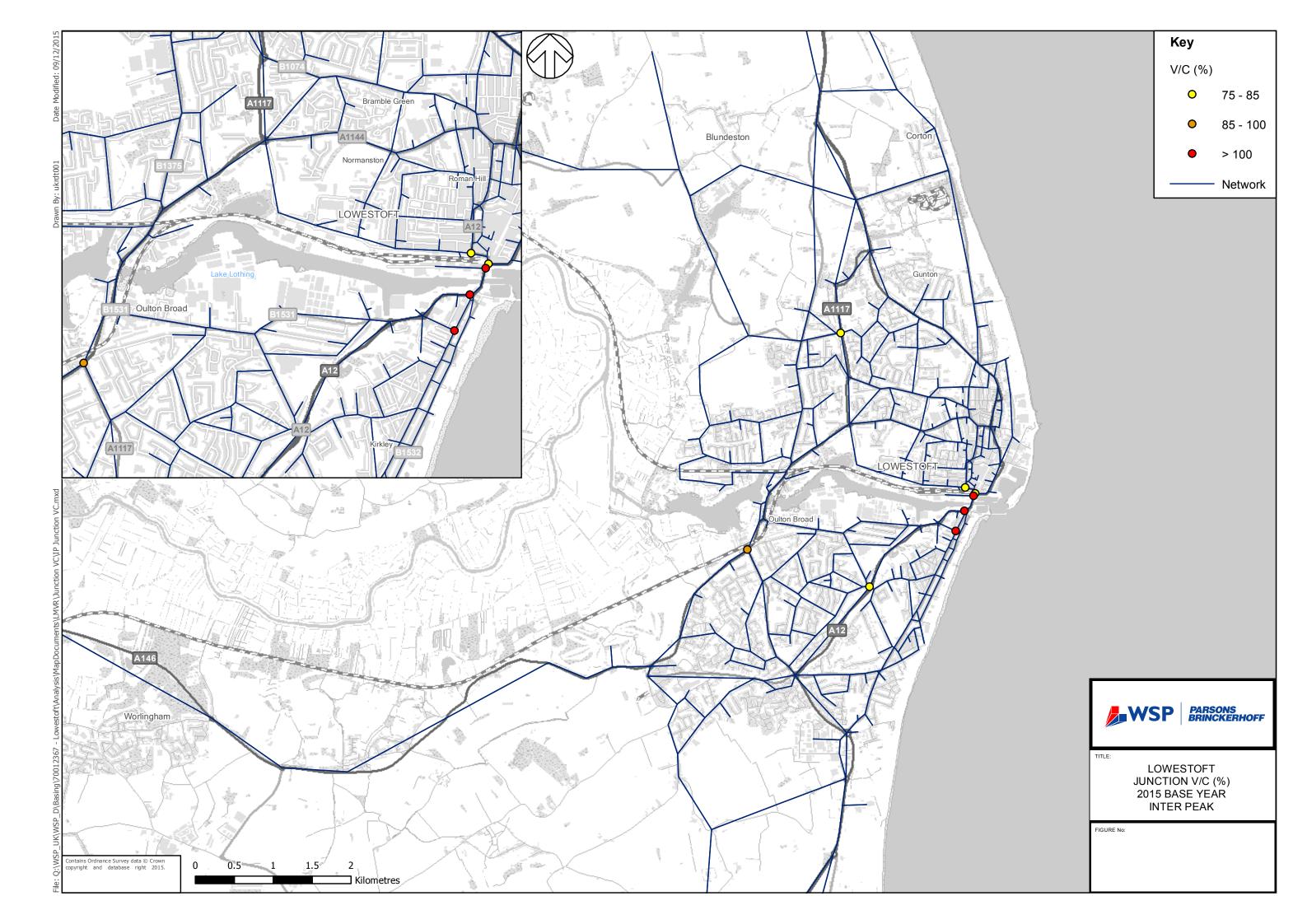


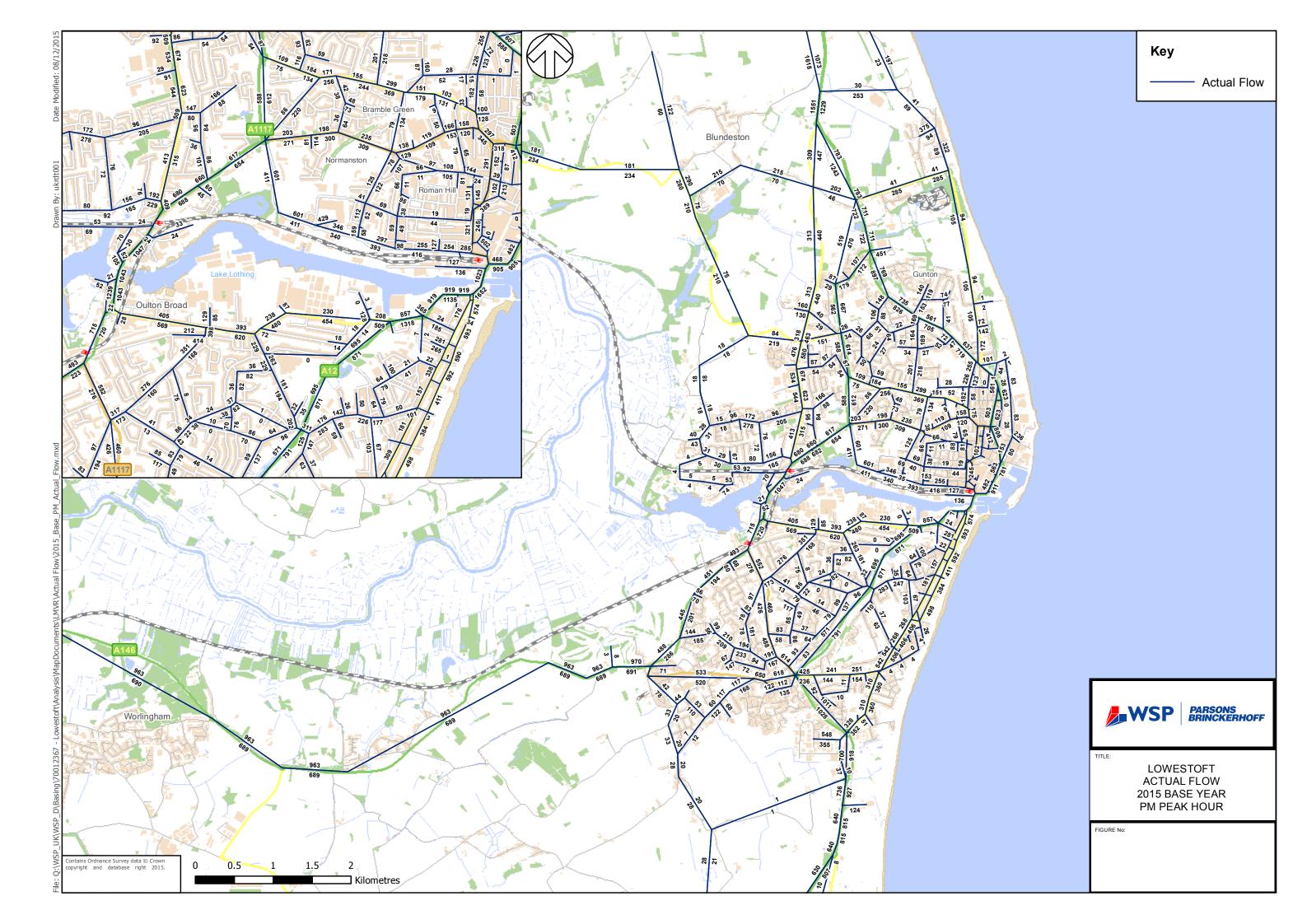




# Appendix G


FLOW AND V/C PLOTS

